PROTEGO[®] Pressure/Vacuum Relief Valves end-of-line

Volume 5

Edition 2009

More than 50 years ago, PROTEGO[®] started developing special devices for protecting systems against explosions as well as pressure and vacuum relief valves that meet the highest standards for performance, pressure conservation, and tight seals. This yielded the original Braunschweiger FLAMEFILTER[®] (Fig. 1) as well as a series of additional innovations that led to numerous patents and imitators. In close cooperation with scientific institutions, continued technical challenges were overcome to meet the increasing requirements for safety and environmental protection.

Today, these products are used throughout the world under the brand names PROTEGO[®] and FLAMEFILTER[®] mainly for the following applications:

- (1) In tank farms for refineries and chemical plants
- 2 In processing plants for chemical and pharmaceutical industries
- (3) In vapour combustion plants
- 4 In ship building, offshore platforms, in loading facilities
- 5 In vapour recovery systems
- 6 As component for machineries and devices
- 7 In biogas and landfill applications
- 8 In flare systems

Our comprehensive product range reliably protects systems for generating, storing, and transporting gases and liquids of every hazard category against dangers such as endurance burning, deflagration and detonation. Our complete line of valves enables tank farms to be safely and economically ventilated. In addition, PROTEGO® offers unique combinations of flame arresters and valves.

All of our devices are tested by independent national and international third parties in the world's largest test facility and have got at least one of the many certifications. The actual performance of the devices is determined in a modern flow measuring test rig to obtain reliable data for their practical use.

PROTEGO[®], FLAMEFILTER[®], and FLAMMENFILTER[®] are international trademarks owned by Braunschweiger Flammenfilter GmbH.

Function and Description

The function of pressure/vacuum valves for relief and conservation and the corresponding applications is discussed in "TechnicalFundamentals" (\rightarrow Vol. 1). In this chapter PROTEGO®'s product line of pressure/vacuum relief valves in end-of-line application is presented.

These are special devices that function as an **end-of-line valve** to protect against pressure and vacuum. The valves may be designed as pipe away version which can be connected to a vent header to process vapors.

Pressure relief valves prevent vapor loss up to the adjusted set pressure and offer reliable protection against excess pressure.

Vacuum relief valves prevent the unallowable entrance of air up to the adjusted set pressure and offer reliable protection against vacuum.

Pressure/vacuum relief valves perform all of the above tasks.

PROTEGO® pressure/vacuum disc relief valves have weightloaded or spring-loaded valve pallets.

PROTEGO® pressure/vacuum relief valves with a full-lift disc discharge the volumetric flow within 10% overpressure from the set pressure up to full lift. After the response, the valve pallet immediately transitions to a full lift (Figs. 1 and 2).

Fig. 2: Outflow with a full-lift disc and metal seal

This is attained by precisely harmonizing the diameter and height of the valve pallet rim with the adapted, lapped valve seat. In addition, a flow-enhancing design reinforces the overall effect on the outflow side. These valve pallets are used in endof-line valves and in-line valves. The arrangement of valve pallet guidance and seal is combined in the term valve pallet.

Given the right size, the unique **10% technology** of the valves enables a set pressure that is just 10% below the maximum allowable tank pressure. For tanks with emergency relief vents the openingpressure of the relief valve needs to be below the set pressure of the emergency relief vent. The valve immediately opens to a full lift under a full load like a classic safety valve but in response to minimum changes in pressure. The full-lift discs are the result of years of development. The ingenious engineering enables reliable valve pallet operation at a full load. The highly developed PROTEGO[®] manufacturing technology has produced a seal that is far superior to the conventional standard. This feature is supported by valve seats made of high-quality stainless steel and individually lapped valve pallets or valve seats with an air cushion seal, among other things.

Diaphragm valves are pressure/vacuum relief valves with a flexible diaphragm. Their special design is to satisfactorily handle problem products, even at extremely low temperatures below freezing, a thousand times over.

In addition to their full-lift characteristic, the closing pressure of self-contained **pilot valves** is just below the opening pressure, so that they close quickly to prevent product losses of contents.

Similar to pilot valves, **high-velocity-vent valves** have a popupen characteristic after which the flow is discharged corresponding to the flow chart.

Special features and advantages

- Large flows with only a slight pressure drop
- Pressure setting close to the opening pressure (PROTEGO[®] 10% technology) for optimum retention of pressure in the system
- Seal superior to the normal standard values, which minimizes product loss
- The valve pallet is guided within the housing to protect against the weather

Preferred Applications

PROTEGO[®] pressure/vacuum relief valves are used as inbreathing and outbreathing valves, pressure relief valves, conservation valves, for simple control, and for venting tanks and equipment when an unallowable vacuum or pressure is exceeded. They are used for low pressures, i.e. in pressure ranges in which classic safety valves cannot be used due to their limited performance characteristics. PROTEGO[®] valves are available as pressure relief valves, vacuum relief valves, or as combined pressure/vacuum relief valves.

PROTEGO[®] diaphragm valves are used for problem products and low temperatures.

Pilot valves are advantageous for special control responses or when a tight seal is required up to the point at which the valve starts to open.

High-velocity-vent valves are used on tanker ships and for special land uses.

Installation and servicing

The valves come with detailed installation and servicing instructions.

Shipping braces are installed for safe transportation. Make sure that the transportation locks are removed before installing the valves. Startup checklists help to properly set up the valves for use.

Selection and sizing

To operate the system properly, the right valve is to be selected.

The criteria for selecting the right device are:

Function - a pressure relief valve, a vacuum relief valve, or a combined pressure/vacuum relief valve, with a pipe-away connection if needed.

Design – a combined end-of-line valve or separate pressure relief and vacuum relief valves with a perpendicular connection or horizontal connection. The devices are weight-loaded; therefore the valves are to be installed vertically.

The adjusted set pressure - the standard maximum allowable (tank) pressure minus 10% overpressure; it determines the combination of materials for the disc.

Type of seal – for disc valves according to the pressure level, either with an air cushion seal, or with a metal seal to provide an extremely tight seal.

Special operating conditions - for viscous and adhesive media, for frost-protected operation, or for use with polymerizing products.

The nominal diameter of the valve is generally determined by the connecting flange of the pipe, tank, or system part, or by the design specified in the performance diagram. To size a valve, the flow must be known for the overpressure output (outbreathing) and vacuum output (inbreathing). The nominal diameter or number of valves may have to be adjusted. Take into account potential system counterpressure when connecting a pipe.

Sizing

The valve size results from the volume flow which has to be vented to avoid an increase above the maximum allowable pressure or vacuum. Certified volume flow diagrams are used for sizing. For correct sizing the operating conditions and the pressure drops of the piping system (including other installed devices) and superimposed backpressures have to be taken into account.

Detailed procedures and examples for sizing are described in "Technical Fundamentals" (see Volume 1).

Example 1

Given: Volume flow Vmax in m3/h / CFH (i.e. for in- or out breathing of a storage tank this is the sum of the pump capacity and the thermal breathing requirement) and maximum allowable opening pressure (i.e. tank pressure) p in mbar / In W.C.

Requested: Valve size DN

Procedure: The intersection point of \dot{V}_{max} and p_T determines the required valve size. Opening pressure = the maximum allowable tank pressure. The volume flow diagrams show the volume flow as function of the opening pressure for a fully open valve.

The set pressure of the valve has to be determined so that the calculated volume flow can safely be discharged. For a valve

which needs 10% overpressure to reach full lift the set pressure may be chosen 10% below the fully open pressure (i.e. maximum allowable tank pressure). Attention: pressure drop of piping systems and other installed devices have to be considered!

Many conventional valves need 100% overpressure to reach full lift. In these cases the set pressure may be just half of the maximum allowable tank pressure. Consequently these valves open earlier and avoidable product losses occur.

Example 2

Alternatively the valve performance has to be checked if the size and maximum allowable pressure are provided.

Given: Connection nozzle size and maximum allowable opening pressure (i.e. tank pressure) p in mbar / In W.C.

Required: Volume flow in m^3/h / CFH, set pressure p_A in mbar / In W.C.

Procedure: From the intersection point of the straight line of p and the valve performance curve of the specific valve size the volume flow Vmax is determined. The volume flow of the set pressure p_A may be 10%, (PROTEGO[®] technology) or 40% or 100% below the opening pressure p_T. Attention: pressure drop of piping systems and other installed devices have to be considered!

The required set pressure (= start of opening) will be the opening pressure (valve fully open) minus the characteristic overpressure.

For PROTEGO® valves and end of line devices the overpressure characteristic is 10% unless otherwise stated. Within 10% overpressure the valve pallet will reach full lift. A further increase in flow performance will follow the pressure volume flow diagram.

Material selection is based on plant and engineering specifications.

PROTEGO® Pressure/Vacuum-Relief-Valves - end-of-line

	Туре	Size	pressure positive setting range mbar / In W.C.	setting negative setting range mbar / In W.C.	Design O = horizontal connection X = vertical connection	O = soft sealing X = metallic sealing	O = for non-standard operating parameters	O = for critical Medium (Polymerisation, Cor rosion, Cristallisation)	O = Heating jacket, Heating coil	Page
Pressure Re	elief Valves, w	eight pallet ty	ре							
Ţ	P/EL	50 - 80 2" - 3"	+3.5 up to +210/ +1.4 up to +84		х	0 / X			0	8-9
Ŷ	P/ELR	80 - 100 3" - 4"	+3.5 up to +210/ +1.4 up to +84		х	0/Х			0	10 - 11
	SD/BS-H	80-200 3" - 8"	+5 up to +210/ +2 up to +84		х	х	0		0	12 - 13
Π	D/SVL	50-300 2" - 12"	+2.0 up to +60/ +0.8 up to +24		х	0 / X				14 - 15
Ħ	ER/V	200-700 8" - 28"	DN 200-350: +5 up to +40/ +2 up to +16 DN 400-700: +5 up to +25/ +2 up to +10		×	0			0	16 - 17
ħ,	ER/VH	200-700 8" - 28"	DN 200-350: >+40 up to +60/ >+16 up to +24 DN 400-700: >+25 up to +60/ >+10 up to +24		×	0				18 - 19
	ER/V-F	200-700 8" - 28"	>+60 up to +500/ >+24 up to +200		х	0				20 - 21
	D/KSM	50-200 2" - 8"	+5.0 up to +100/ +2.0 up to +40		х	0	0	ο		22 - 24
Vacuum Re	lief Valves, we	ight pallet typ	e							
	SV/E-1-0	50 - 300 2" - 12"		-2.0 up to -60 / -0.8 up to -24	0	0/Х			0	26 - 27
Ţ	SV/T-0-H	80 - 250 3" - 10"		-7.0 up to -50 / -2.8 up to -20	х	х	0		0	28 - 29
00.00	V/KSM	50-200 2" - 8"		-5.0 up to -100 / -2.0 up to -40	0	0	0	0		30 - 32

	Туре	Size	pressure setting positive negative setting range setting range mbar / mbar / In W.C. In W.C.		Design O = horizontal connection X = vertical connection	O = soft sealing X = metallic sealing	O = for non-standard operating parameters	O = for critical Medium (Polymerisation, Cor- rosion, Cristallisation)	O = Heating jacket, Heating coil	Page
Pressure ar	nd Vacuum Reli	ef Valves, w	eight pallet type							
Ĵ	PV/EL	50 - 80 2" - 3"	+2.0 up to +210/ +0.8 up to +84	-3.5 up to -35 / -1.4 up to -14	0	0 / X			0	34 - 37
	PV/ELR	80 - 100 3" - 4"	+2.0 up to +210/ +0.8 up to +84	-3.5 up to -50 / -1.4 up to -20	0	0 / X			0	38 - 41
	VD/SV	50 - 80 2" - 3"	+2.0 up to +60 / +0.8 up to +24	-2.0 up to -60 / -0.8 up to -24	х	0 / X			0	42 - 44
	VD/SV-PA(L)	50 - 300 2" - 12"	+2.0 up to +60 / +0.8 up to +24	-2.0 up to -60 / -0.8 up to -24	х	0 / X			0	46 - 49
	VD/KSM	50 - 200 2" - 8"	+5.0 up to +100 / +2.0 up to +40	-5.0 up to -100 / -2.0 up to -40	х	0	0	0		50 - 52
50 00 50 00 11	VD/KSM-PA	50 - 200 2" - 8"	+5.0 up to +100 / +2.0 up to +40	-5.0 up to -100 / -2.0 up to -40	х	0	0	0		54 - 56
Pressure an	nd Vacuum Reli	ef Valves, pi	lot-operated							
	PM/(D)S	80 - 300 3" - 12"	+10 up to +300 / +4.0 up to +120	-3.0 up to -7 / -1.2 up to -2.8	х	х	0			58 - 61
	PM/F	80 - 300 3" - 12"	+10 up to +300 / +4.0 up to +120	-3.0 up to -10 / -1.2 up to -4.0	х	х	0			62 - 65

PROTEGO® P/EL

Pressure settings:

+3.5 mbar up to +210 mbar +1.4 ln W.C. up to +84 ln W.C.

Higher pressure settings upon request.

Function and Description

The P/EL type PROTEGO[®] valve is a highly developed pressure relief valve. It is primarily used as a safety device for relieving pressure in tanks, containers and process engineering equipment. The valve protect against unallowable overpressure and prevents the unacceptable loss of product vapors close to the set pressure.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Con-

tinuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure of the tank and still safely vent the required mass flow.

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure, with a tightness that is far superior to the conventional standard. This feature is facilitated by valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used, and they enable the use of corrosive media. After the excess pressure is discharged, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

Special Features and Advantages

- · 10% technology for minimum pressure rise up to full lift
- · excellent seal for reducing product losses and emissions
- set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- · high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · can be used in areas subject to an explosion hazard
- · self-actuated condensate drain

Design Types and Specifications

The valve pallet is weight-loaded. At set pressures greater than 80 mbar (32.1 In W.C.), an elongated construction is used.

There are two different designs

Pressure valve in basic design	P/EL
Pressure valve with heating jacket	P/EL - H

Additional special devices available upon request.

Table 1: Dimensions Dimensions in mm / inches						
To select the r						
DN	50 / 2"	50 / 2"	80 / 3"	80 / 3"		
Set pressure	≤ +80 mbar ≤ +32.1 In W.C.	> +80 mbar > +32.1 ln W.C.	≤ +80 mbar ≤ +32.1 ln W.C.	> +80 mbar > +32.1 In W.C.		
а	218 / 8.58	218 / 8.58	218 / 8.58	218 / 8.58		
b 287 / 11.30 452 / 17.80 289 / 11.38 4						
Dimensions for r	proceure values with heating	jacket upon request				

Dimensions for pressure valves with heating jacket upon request

Table 2: Material selection for housing									
Design	В	С							
Housing Heating jacket (P/EL-H)	Steel Steel	Stainless Steel Stainless Steel							
Valve seat	Stainless Steel	Stainless Steel	Special materials upon request						
Weather hood	Steel	Stainless Steel							
Protective mesh screen	Stainless Steel	Stainless Steel							

Table 3: Material selection for pressure valve pallet									
Design		А	В	С	D	Special materials			
Pressure range	[mbar] [In W.C.]	+3.5 up to +5.0 +1.4 up to +2.0	>+5.0 up to +14 >+1.4 up to +5.6	>+14 up to +210 >+5.6 up to +84	>+14 up to +210 >+5.6 up to +84	(Aluminum-coated, Titanium, Hastelloy) and higher			
Valve pallet		Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	pressure settings upon			
Sealing		FEP	FEP	Metal to Metal	PTFE	request			

The flow capacity curve has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow V in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

PROTEGO® P/ELR

Pressure settings:

+3.5 mbar up to +210 mbar +1.4 ln W.C. up to +84 ln W.C. Higher pressure settings upon request.

Function and Description

The P/ELR type PROTEGO[®] valve is a highly developed pressure relief valve with excellent flow performance. It is primarily used as a safety device for relieving pressure in tanks, containers, and process engineering equipment. The valve offers reliable protection against overpressure and prevents the unacceptable loss of product vapors close to the set pressure.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Con-

tinuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure of the tank and still safely vent the required mass flow.

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure with a tightness that is far superior to the conventional standard. This feature is facilitated by valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

Special Features and Advantages

- · 10% technology for minimum pressure rise up to full lift
- · excellent seal for reducing product losses and emissions
- set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- · high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · Can be used in areas subject to an explosion hazard
- · self-actuated condensate drain

Design Types and Specifications

The valve pallet is weight-loaded. At set pressures greater than 80 mbar (32.1 In W.C.), an elongated construction is used.

There are two different designs

Pressure valve in basic design	P/ELR
Pressure valve with heating jacket	P/ELR - H
Additional special devices available upon	

Table 1: Dimensions Dimensions in mm / inches							
To select the nominal size (DN), use the flow capacity chart on the following page							
DN	80 / 3"	80 / 3"	100 / 4"	100 / 4"			
Set pressure	≤ +80 mbar ≤ +32.1 In W.C.	> +80 mbar > +32.1 ln W.C.	≤ +80 mbar ≤ +32.1 ln W.C.	> +80 mbar > +32.1 In W.C.			
а	353 / 13.90	353 / 13.90	353 / 13.90	353 / 13.90			
b	345 / 13.58	505 / 19.88	345 / 13.58	505 / 19.88			

request.

Dimensions for pressure valves with heating jacket upon request

Table 2: Material selection for housing								
Design	В	С						
Housing Heating jacket (P/ELR-H)	Steel Steel	Stainless Steel Stainless Steel						
Valve seat	Stainless Steel	Stainless Steel	Special materials upon request					
Weather hood	Steel	Stainless Steel						
Protective mesh screen	Stainless Steel	Stainless Steel						

Table 3: Material selection for pressure valve pallet									
Design	А	В	С	D					
Pressure range [mbar] [In W.C.]	+3.5 up to +5.0 +1.4 up to +2.0	>+5.0 up to +14 >+1.4 up to +5.6	>+14 up to +210 >+5.6 up to +84	>+14 up to +210 >+5.6 up to +84	Special materials (Aluminum-coated, Titanium,				
Valve pallet	Aluminium	Stainless steel	Stainless steel	Stainless steel	pressure settings upon request				
Sealing	FEP	FEP	Metal to Metal	PTFE					

EN 1092-1, Form B1 or DIN 2501, Form C, PN 16

ANSI 150 lbs RFSF

P/ELR -	Н –	100 -	в –	100 / -	-	D	-	DIN

other types upon request

See Vol. 1 "Technical Fundamentals"

EN or DIN

ANSI

Flow Capacity Chart

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow V in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

in heat jacketed design

PROTEGO[®] SD/BS-H

+5.0 mbar up to +210 mbar +2.0 in W.C. up to +84 in W.C. Higher pressure settings upon request.

Function and Description

The SD/BS-H type PROTEGO® valve is a highly developed pressure relief valve with a heating jacket down to the flange. It is primarily used as pressure relief device for vessels and process engineering equipment under difficult operating conditions. This includes extreme weather conditions or products that tend to form polymers at certain temperatures, adhere, or form deposits that negatively influence function (such as bitumen, tar, dust). The valve offers reliable protection against overpressure and prevents the unacceptable loss of product vapors close to the set pressure.

When the set pressure is reached, the valve starts to open and is fully open within 10% overpressure. This unique 10% "full lift type technology" enables a pressure setting that is only 10% below the maximum allowable working pressure or design pressure of the tank. Even in the low pressure range the vent has the opening characteristic comparable to a typical high pressure safety relief valve. The full lift type pallets are a result of many years of development. The reliable engineering enables stable valve pallet operation. Due to our highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a seal that is far superior to the conventional standard. This feature is ensured by valve seats made of high-grade stainless steel with precisely lapped valve pallets and a reinforced housing design. After the excess pressure is discharged, the valve reseats and provides a tight seal again.

Special Features and Advantages

- 10% technology for minimum pressure rise up to full lift
- excellent seal for reducing product losses and emissions
- set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- · high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- can be used in areas subject to an explosion hazard
- heating jacketed design down to the flange to avoid cold bridges
- maximum permissible heating medium temperature of 320°C / 608°F (at 6 bar / 87 psi)
- a special design with a heatable valve cover is available
- at low pressure settings, an optimized valve pallet cover prevents the set pressure from being distorted by dust or condensate
- · reinforced housing design
- a special design with a mechanical vent pallet lift device is available

Design Types and Specifications

The valve pallet is weight-loaded. Starting at a set pressure of 30 mbar, a vane guide is also used.

Pressure valve in basic design with heating **SD/BS - H** jacket

Additional special devices available upon request.

Table 1: Dimensions

To select the nominal size (DN), use the flow capacity chart on the following page

		().			01 0			
DN1	DN2	а	b	b	С	d	d	е
			≤ 30 mbar ≤ 12 in W.C.	> 30 mbar > 12 in W.C.		≤ 30 mbar ≤ 12 in W.C.	> 30 mbar > 12 in W.C.	
80 / 3" *	15 / ½"	325 / 12.80	400 / 15.75	515 / 20.28	70 / 2.76	250 / 9.84	390 / 15.35	250 / 9.84
100 / 4"	15 / ½"	325 / 12.80	400 / 15.75	505 / 19.88	60 / 2.36	250 / 9.84	380 / 14.96	250 / 9.84
150 / 6"	15 / 1⁄2"	405 / 15.94	460 / 18.11	595 / 23.43	60 / 2.36	315 / 12.40	470 / 18.50	290 / 11.42
200 / 8"	15 / ½"	510 / 20.08	470 / 18.50	575 / 22.64	65 / 2.56	305 / 12.01	445 / 17.52	340 / 13.39
* also available	e with specia	I flange DN 5	0 / 2"					

Dimensions in mm / inches

Table 2: Material selection	on for housing							
Design	А		В					
Housing Heating Jacket	Steel Steel		Stainles: Stainles:	s Steel s Steel		Special materials upon request		
Valve Seat	Stainless Steel		Stainles	s Steel				
Table 3: Material selection	on for pressure va	lve pallet	t					
Design	А	В		С				
Pressure range [mbar] [In W.C.]	+5 up to +25 +2 up to +10	>+10 up >+4 up	p to +30 >+30 up to +210 p to +12 >+12 up to +84		o +210 o +84	Special materials and	l higher pressure	
Valve pallet	Aluminium	Stainles	s Steel	Stainless	Steel	settings upon request		
Valve pallet hood	Stainless Steel	Stainles	s Steel	-				
Sealing	Metal to Metal	Metal to	Metal	Metal to N	/letal			
Table 4: Flange connect	ion type							
EN 1092-1, Form B1 or I	DIN 2501, Form C, F	PN 16; fro	m DN 200) PN 10	EN or [DIN		
ANSI 150 lbs RFSF		,			ANSI	other types upon	request	
Type Nominal S. SD/BS-H	Naterial (1. set press	aterial ue v (pressure v ab. 4	[]	Orde SD/B Mater See V	$\frac{1}{S-H} = \begin{bmatrix} \\ S-H \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	ble 200 - B - 50/ - chemical resistance: chnical Fundamentals' (0,0) (0,0	B – DIN - B – DIN	1
airflow in tho	usands of CFH							
9 10 15	20 30	5	0	100		200 300	530	
					/		200	
							100	
50/65-п							- 50	
100								
50							20	N.O
30 30								-
e 20								Jre
							- 5	essi
						TUV Rheinlan	d Group	bu
250 300	500 10	000	200	0		5000 10000) 15000	
flow rate V Ir	n³/h]							
							4	
T he R and the the the	1						A	

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

PROTEGO® D/SVL

Pressure settings:

+2.0 mbar up to +60 mbar +0.8 in W.C. up to +24 in W.C. Higher pressure settings upon request.

Function and Description

The D/SVL type PROTEGO[®] valve is a high performance pressure relief valve. It is primarily used as a safety device for relieving pressure in tanks, containers, and process engineering equipment. The valve offers reliable protection against overpressure and prevents the unacceptable loss of product vapors close to the set pressure.

When the set pressure is reached, the valve starts to open and is fully open within 10% overpressure. This unique 10% "full lift

type technology" enables a pressure setting that is only 10% below the maximum allowable working pressure or design pressure of the tank. Even in the low pressure range the vent has the opening characteristic comparable to a typical high pressure safety relief valve. The full lift type pallets are a result of many years of development. The reliable engineering enables stable valve pallet operation.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a seal that is far superior to the conventional standard. This feature is achieved by valve seats made of high grade stainless steel with precisely lapped valve pallets and seats (1) or with an air cushion seal and precisely lapped seats (2). The valve pallets are also available with a PTFE seal to prevent the valve pallet from sticking when sticky products are used, and they enable the use of corrosive media. After the excess pressure is discharged, the valve reseats and provides a tight seal again.

Special Features and Advantages

- · 10% technology for minimum pressure rise up to full lift
- · excellent seal for reducing product losses and emissions
- set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- · extremely high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · can be used in areas subject to an explosion hazard

Design Types and Specifications

The valve pallet is weight-loaded. Higher pressures can be achieved upon request with a special spring-loaded design.

Pressure valve in basic design D/SVL -

Additional special devices available upon request.

Table 1:	Table 1: Dimensions Dimensions in mm / inches								
To select the nominal size (DN), use the flow capacity chart on the following page									
DN	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"		
а	345 / 13.58	415 / 16.34	445 / 17.52	565 / 22.24	665 / 26.18	690 / 27.17	690 / 27.17		
b	200 / 7.87	295 / 11.61	295 / 11.61	465 / 18.31	550 / 21.65	650 / 25.59	650 / 25.59		

Table 2: Material selection for ho	ousing		
Design	А	В	
Housing	Steel	Stainless Steel	
Valve seat	Stainless Steel	Stainless Steel	Special Materials upon request
Sealing	WS 3822	PTFE	
Weather hood	Stainless Steel	Stainless Steel	

Table 3: Material selection for pressure valve pallet								
Design	А	В	С	D	E	F		
Pressure [mbar] range [In W.C.]	+2.0 up to +3.5 +0.8 up to +1.4	>+3.5 up to +14 >+1.4 up to +5.6	>+14 up to +35 >+5.6 up to +14	>+35 up to +60 >+14 up to +24	>+14 up to +35 >+5.6 up to +14	>+35 up to +60 >+14 up to +24		
Valve	Aluminium	Stainless steel	Stainless steel	Stainless steel	Stainless steel	Stainless steel		
Sealing	FEP	FEP	Metal to Metal	Metal to Metal	PTFE	PTFE		
Special Materials (Alu-	coated, Titan, Has	stelloy), higher pres	ssure settings upo	n request				

Table 4: Flange connection type EN 1092-1, Form B1 or DIN 2501, Form C, PN 16; from DN 200 PN 10 EN or DIN other types upon request ANSI 150 lbs RFSF ANSI Naterial Levalve pallet ue vaive vaive connection Material (housing) , Set pressure Nominalsite Material TYPE **Order example** D/SVL 200 В 50/ F DIN D/SVL ~a0.3' r Þ Materials and chemical resistance: 13^{0.} **7**30 C 130 See Vol. 1 "Technical Fundamentals" $= \frac{D_{N}}{D_{N}} \frac{2S_{0}}{30_{0}} \frac{1}{72_{m}}$ - 0N 50, - 0N 80, - DN 1001 - 0₁ 150, 6 - 01, 200, 6 **Flow Capacity Chart** airflow in thousands of CFH 5 10 20 30 50 100 200 500 1,000 1,500 200 50 100-D/SVL 50-20 30 10 20-5 10pressure - In W.C. pressure [mbar] 5 2 3. 1 2. τÜV **TÜV Rheinland Group** 0.5 1. 5,000 100 300 500 1,000 2,000 10,000 20,000 50,000 flow rate V [m3/h]

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

PROTEGO[®] ER/V

Pressure settings:

DN 200 to DN 350:	+5 mbar	up to +40 mbar
	+2 In W.C.	up to +16 In W.C.
DN 400 to DN 700:	+5 mbar	up to +25 mbar
	+2 In W.C.	up to +10 In W.C

For higher pressure settings, see types ER/VH and ER/V-F.

Function and Description

The ER/V type PROTEGO[®] valve is a highly developed emergency pressure relief valve valve. It is primarily used as a safety device for emergency pressure relief for storage tanks, containers, silos, and process engineering equipment; it offers reliable protection against overpressure and prevents impermissible product vapor loss close to the set pressure. It is designed to relief particularly large amounts to prevent the vessel from rupturing in an emergency case.

When the set pressure is reached, the valve starts to open and is fully open within 10% overpressure. This unique 10% "full lift type technology" enables a pressure setting that is only 10% below the maximum allowable working pressure or design pressure of the tank. Even in the low pressure range the vent has the opening characteristic comparable to a typical high pressure safety relief valve. The full lift type pallets are a result of many years of development. The reliable engineering enables stable valve pallet operation.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a seal that is far superior to the conventional standard. This feature is achieved by valve seats made of stainless steel with an inserted Oring seal, a precisely lapped valve pallet, as well as a reinforced housing design. After the excess pressure is relieved, the valve reseats and provides a tight seal again.

Special Features and Advantages

- 10% technology for minimum pressure rise up to full lift
- · excellent seal for reducing product losses and emissions
- set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · can be used in areas subject to explosion hazards
- reinforced design
- safely secured housing cover
- · best technology for API-tanks

Design Types and Specifications

The valve pallet is weight-loaded. Higher pressures are achieved with levers (see ER/VH) or with spring-loading (see ER/V-F).

Pressure valve in basic design ER/V

Additional special devices available upon request.

Table	Fable 1: Dimensions Dimensions in mm / inches								
To sel	ect the nomina	al size (DN), u	use the flow ca	apacity chart o	on the followin	ig page			
DN	200 / 8"	250 / 10"	300 / 12"	350 / 14"	400 / 16"	450 / 18"	500 / 20"	600 / 24"	700 / 28"
а	305 / 12.01	375 / 14.76	425 / 16.73	445 / 17.52	495 / 19.49	545 / 21.46	615 / 24.21	715 / 28.15	795 / 31.30
b				dependi	ng on pressur	e setting			

Table 2: Material se	election		
Design	А	С	
Housing	Steel	Stainless Steel	* depending on pressure setting
Valve seat	Stainless Steel	Stainless Steel	
Valve pallet	Aluminium or Steel-Stainless Steel*	Stainless Steel	Special Materials upon regest
Sealing	FPM	FPM	

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

PROTEGO® ER/VH

Pressure settings:

DN 200 to DN 350:	>+40 mbar	up to	+60 mbar
	>+16 In W.C.	up to	+24 In W.C.
DN 400 to DN 700:	>+25 mbar	up to	+60 mbar
	>+10 In W.C.	up to	+24 In W.C.
Higher and lower pr	acura acttinga	unon	roquoat

Higher and lower pressure settings, upon request.

Function and Description

The ER/VH type PROTEGO® valve is a highly developed emergency pressure relief valve. It is primarily used as a safety device for emergency pressure relief for storage tanks, containers, silos, and process engineering equipment; it offers reliable protection against overpressure and prevents impermissible product vapor loss close to the set pressure. It is designed to discharge particularly large amounts to prevent the vessel from rupturing in an emergency case. Higher set pressures are achieved by a lever with lockable weight loading. The position of the weight is factory-marked. Starting at DN 500, the devices can also be used as manhole covers.

When the set pressure is reached, the valve starts to open and is fully open within 10% overpressure. This unique 10% "full lift type technology" enables a pressure setting that is only 10% below the maximum allowable working pressure or design pressure of the tank. Even in the low pressure range the vent has the opening characteristic comparable to a typical high pressure safety relief valve. The full lift type pallets are a result of many years of development. The valve pallet is mounted on one side.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a seal that is far superior to the conventional standard. This feature is achieved by valve seats made of stainless steel with an inserted O-ring seal, a precisely lapped valve pallet, as well as a reinforced housing design. After the excess pressure is discharged, the valve reseats and provides a tight seal again.

Special Features and Advantages

- · 10% technology for minimum pressure rise up to full lift
- · excellent seal for reducing product losses and emissions
- · set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- · high flow capacity
- · can be used in areas subject to explosion hazards
- · reinforced housing design
- · safely secured housing cover
- · best technology for API-tanks

Design Types and Specifications

The valve pallet is weight-loaded. Lower pressures are generally achieved without a lever design (see ER/V), and higher pressures are realized with spring-loading (see ER/V-F).

Pressure valve in basic design

ER/VH

Dimensions in mm / inches

Additional special devices available upon request.

Table 1: Dimensions

To select the nominal size (DN) use the flow capacity chart on the following page

10.00				oupdoity one		ming page			
DN	200 / 8"	250 / 10"	300 / 12"	350 / 14"	400 / 16"	450 / 18"	500 / 20"	600 / 24"	700 / 28"
а	305 /	375 /	425 /	445 /	495 /	545 /	615 /	715 /	795 /
	12.01	14.76	16.73	17.52	19.49	21.46	24.21	28.15	31.30
b	350 /	365 /	385 /	390 /	390 /	415 /	420 /	450 /	465 /
	13.78	14.37	15.16	15.35	15.35	16.34	16.53	17.72	18.31
с	200 /	240 /	265 /	285 /	310 /	330 /	360 /	410 /	450 /
	7.87	9.45	10.43	11.22	12.20	12.99	14.17	16.14	17.72
d	590 /	735 /	780 /	845 /	890 /	1070 /	1090 /	1140 /	1380 /
	23.23	28.94	30.71	33.27	35.04	42.13	42.91	44.88	54.33

All rights and alterations reserved acc. ISO 16016 - Active data sheet at www.protego.de

Housin	g	Steel	Stainless Steel	DIN 2501, Foi	rm C, PN 16; fror	m DN 200 PN 10	DIN
Valve s	seat	Stainless Steel	Stainless Steel	ANSI 150 lbs	RFSF		ANSI
Valve p	allet	Stainless Steel or Steel-Stainless Steel*	Stainless Steel	other types upon	i request		
Sealing)	FPM	FPM				
Weight		Steel	Stainless Steel				
Special m	aterial	s upon request					
* dependi	ng on p	pressure setting					
		.10	.t ^e	ection			
	e	minal Size aterial	t pressure				
TY	2°	_Non_Mars_9	Flain type	Order example	•		
ER/VH	-	/		ER/VH – 5	00 – B –	50 / - DI	N
			 ~	Materials and ch	emical resistance	e:	
	Tab.	Tab. ing Imban W.O.	Tab.	See Vol. 1 "Tech	nical Fundament	als"	
		Setting L					
	nacity	, Chart					
FIOW Ca	распу	Glan					
		"8	10,	¹ 4'	⁷ 18,	/24/ /28/	
		,200	, 300	350	450	, 700	
		Na .				Na Na -	
		I		1 1	I	1 1	
	air	flow in thousands of CFH					
15	212 0 -	300 500) 750 1000 I I	1300 I	2000 300	00 4000 5000	60
15							60
10							40
10							40
6	0						G
bar]							20
<u>ع</u> 4	0 					┼┼╂╶┼╌┼╴┤	15 <u>-</u>
sure 3	۰						sure
ress						TŪV Rheinland Group	10 20
2	o 🔟						8
-	6000	8000 10000	20000	40000	60000	100000 15000	00

Table 3: Flange connection type

EN 1092-1, Form B1 or

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

EN or

for safety and environment

Table 2: Material selection

А

В

Design

PROTEGO® ER/V-F

Pressure settings:

+60 mbar up to +500 mbar
+24 In W.C. up to +200 In W.C.
Higher pressure settings, upon request.
Lower pressure settings, see types ER/V and ER/VH.

Function and Description

The ER/V-F type PROTEGO® valve is a highly developed emergency pressure relief valve. It is primarily used as a safety device for emergency pressure relief for storage tanks, containers, silos, and process engineering equipment; it offers reliable protection against overpressure and prevents impermissible product vapor loss close to the set pressure. It is designed to discharge particularly large amounts to prevent the vessel from rupturing in a emergency case. The spring-loading allows for higher set pressures than those with the ER/V or ER/VH. When the set pressure is reached, the valve starts to open and is fully open within 10% overpressure. This unique 10% "full lift type technology" enables a pressure setting that is only 10% below the maximum allowable working pressure or design pressure of the tank. Even in the low pressure range the vent has the opening characteristic comparable to a typical high pressure safety relief valve. The full lift type pallets are a result of many years of development. The reliable engineering enables stable valve pallet operation.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a seal that is far superior to the conventional standard. This feature is achieved by valve seats made of high-grade steel with an inserted O-ring seal, a precisely lapped valve pallet, as well as a reinforced housing design. After the excess pressure is relieved, the valve reseats and provides a tight seal again.

Special Features and Advantages

- 10% technology for minimum pressure rise up to full lift
- · excellent seal for reducing product losses and emissions
- set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · can be used in areas subject to explosion hazards
- · reinforced housing design
- spring-loading for high set pressures
- · best technology for API-tanks

Pressure valve in basic design

Design Types and Specifications

The valve pallet is spring-loaded. Lower pressures are achieved with the ER/V and ER/VH designs.

ER/V-F

Additional special devices available upon request.

Ιαυι	e I. Dimensio	115					L		min / mones
To se	To select the nominal size (DN), use the flow capacity chart on the following page								
DN	200 / 8"	250 / 10"	300 / 12"	350 / 14"	400 / 16"	450 / 18"	500 / 20"	600 / 24"	700 / 28"
а	465 / 18.31	550 / 21.65	650 / 25.59	650 / 25.59	800 / 31.50	800 / 31.50	1000 / 39.37	1000 / 39.37	1200 / 47.24
b	860 / 33.86 (≤370 mbar ≤148 lnW.C.)	860 / 33.86 (≤240 mbar ≤96 lnW.C.)	1170 / 46.06 (≤240 mbar ≤96 lnW.C.)	1170 / 46.06 (≤270 mbar ≤108 InW.C.)	1150 / 45.28 (≤220 mbar ≤88 lnW.C.)	1175 / 46.26 (≤170 mbar ≤68 lnW.C.)	1430 / 56.30 (≤130 mbar ≤52 InW.C.)	1425 / 56.10 (≤140 mbar ≤56 InW.C.)	1690 / 66.54 (≤140 mbar ≤56 InW.C.)
b	980 / 38.58 (>370 mbar >148 lnW.C.)	980 / 38.58 (>240 mbar >96 InW.C.)	1490 / 58.66 (>240 mbar >96 InW.C.)	1490 / 58.66 (>270 mbar ≤108 lnW.C.)	1490 / 58.66 (>220 mbar ≤88 InW.C.)	1515 / 59.65 (>170 mbar >68 inW.C.)	1660 / 65.35 (>130 mbar >52 InW.C.)	1655 / 65.16 (>140 mbar >56 InW.C.)	1910 / 75.20 (>140 mbar >56 InW.C.)

Table 2: Material selection						
Design	А	В				
Housing	Steel	Stainless Steel				
Valve seat	Stainless Steel	Stainless Steel	4			
Valve pallet	Stainless Steel or Steel-Stainless Steel*	Stainless Steel	oth			
Sealing	FPM	FPM				
Pressure spring	Stainless Steel	Stainless Steel				
Weather hood	Steel	Stainless Steel				

Table 3: Flange connection typeEN 1092-1, Form B1 or
DIN 2501, Form C, PN 16; from DN 200 PN 10EN or
DINANSI 150 lbs RFSFANSIther types upon requestANSI

Special materials upon request * depending on pressure setting

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

Pressure Relief Valve

made of plastic

PROTEGO® D/KSM

Pressure settings:

+5 mbar up to +100 mbar +2 ln W.C. up to +40 ln W.C. Higher pressure settings upon request.

Function and Description

The PROTEGO® valve D/KSM is a state-of-the-art pressure relief valve with excellent flow performance made out of highgrade synthetic material. It is primarily used as a safety fitting for relieving pressure in tanks, containers, and process engineering equipment. The valve prevents emission losses almost up to the set pressure. The valve is a perfect solution for corrosive, polymerizing or sticky media.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure (MAWP) of the tank and still safely vent the required mass flow. Due to our highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a tightness that is far superior to the conventional standard. This feature is facilitated by special valve seats made of high quality synthetic material or PTFE. After the excess pressure is discharged, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

Special Features and Advantages

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- based on 10% technology the set pressure is close to the opening pressure which results in best possible pressure management of the system compared to conventional 40%or 100%- technology valves
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · corrosion resistant valve
- · weight reduction in comparsion to steel/stainless steel
- smooth surface
- · condensate drain
- · different plastics can be combined
- · maintenance friendly design

Design Types and Specifications

The valve pallet is weight-loaded, and the highest pressure levels are only attained with metal disks.

Pressure valve in basic design D/KSM-

Additional special devices available upon request.

Table 1: Dimensions Dimensions in mm / inches									
To select the nominal size (DN) use the flow capacity charts on the following pages									
DN	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"				
-	276/14.90	E21 / 20 E1	563 / 22.17	687 / 27.05	952 / 37.48				
a 370	3707 14.00	521720.51	(543 / 21.38)*	(681 / 26.81)*					
h	190 / 7 00	250 / 0.84	200 / 11 91	350 / 13.78	560 / 22.05				
U	10077.09	25079.04	3007 11.01	(405 / 15.94)*	(500 / 19.68)*				

* Dimensions in brackets only for PVDF

Tabelle 2: Material selection for housing									
Design	А	В	С						
Housing	PE	PP	PVDF						
Valve seats	PE	PP	PVDF	Special materials upon request					
Sealing	FPM	FPM	FPM						
Valve pallet	A, C, D	B, C, D	C, D						

Table 3: Material selection for pressure valve pallet							
Design	А	В	С	D			
Pressure range [mbar] [In W.C.]	+5.0 up to +17 +2.0 up to +6.8	+5.0 up to +17 +2.0 up to +6.8	+10 up to +32 +4.0 up to +12.8	+30 up to +100 +12 up to +40			
Valve pallet	PE	PP	PVDF	Hastelloy			
Sealing	PTFE	PTFE	PTFE	PTFE			
Spindle guide	PE	PP	PVDF	Hastelloy			
Weights	PE	PP	PVDF	Hastelloy			

Special materials and other pressure settings are available upon request

Table 4: Flange connection type

EN 1092-1, Form B1 or DIN 2501, Form C, PN 16; from DN 200 PN 10	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

Pressure Relief Valve Flow Capacity Chart

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

Notes:

PROTEGO® SV/E-1-0

Vacuum settings:

-2,0 mbar up to -60 mbar -0.8 ln W.C. up to -24 ln W.C. Higher vacuum settings upon request.

Function and Description

The SV/E-1-0 type PROTEGO[®] valve is a highly developed vacuum relief valve with excellent flow performance. It is primarily used as a safety device for relieving vacuum in tanks, containers, and process engineering equipment. The valve offers reliable protection against vacuum, and prevents inbreathing of air close to the set pressure.

When the set vacuum is reached, the valve starts to open and is fully open within 10% vacuum increase. This unique 10% "full lift type technology" enables a setting that is only 10% below the maximum allowable working or design vacuum of the tank. Even in the low pressure range the vent has the opening characteristic comparable to a typical safety relief valve. The full lift type pallets are a result of many years of development. The reliable engineering enables stable valve pallet operation.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set vacuum, with a seal that is far superior to the conventional standard. This feature is achieved by valve seats made of high grade stainless steel with precisely lapped valve pallets and seats (1) or with an air cushion seal and precisely lapped seats (2). The valve pallets are also available with a PTFE seal to prevent the valve pallet from sticking when sticky products are used, and they enable the use of corrosive media. After the vacuum is relieved, the valve reseats and provides a tight seal again.

Special Features and Advantages

- · 10% technology for minimum accumulation up to full lift
- · excellent seal for reducing product losses and emissions
- set vacuum is close to full lift vacuum, which results in high level of design freedom and product savings
- · high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · can be used in areas subject to an explosion hazard
- · self-actuated condensate drain
- best technology for API-tanks

Design Types and Specifications

The valve pallet is weight-loaded. Higher vacuum can be achieved upon request with a special spring-loaded design.

There are two different designs

Vacuum valve in basic design	SV/E-1-0
Vacuum valve with heating jacket	SV/E-1-0 - H

Additional special devices available upon request.

Table 1:	Table 1: Dimensions Dimensions in mm / inches									
To selec	To select the nominal size (DN) use the flow capacity chart on the following page									
DN	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"			
а	140 / 5.51	170 / 6.69	190 / 7.48	230 / 9.06	300 / 11.81	325 / 12.80	425 / 16.73			
b	75 / 2.95	85 / 3.35	95 / 3.74	120 / 4.72	140 / 5.51	165 / 6.50	205 / 8.07			
с	205 / 8.07	205 / 8.07	285 / 11.22	355 / 13.98	405 / 15.94	460 / 18.11	500 / 19.69			
d	170 / 6.69	235 / 9.25	280 / 11.02	335 /13.19	445 / 17.52	505 / 19.88	505 / 19.88			
е	215 / 8.46	215 / 8.46	255 / 10.04	335 / 13.19	425 / 16.73	460 / 18.11	625 / 24.61			
Dimensions for vacuum relief valves with heating jacket upon request										

All rights and alterations reserved acc. ISO 16016 - Active data sheet at www.protego.de

Table 2: Material selec	tion for	housing										
Design		А		В		С		D		The hous	sings is also	
Housing Heating jacket (SV/E-1	-0-H)	Ductail I –	Iron	Steel Steel		Stainless Stainless	s Steel s Steel	Aluminiu –	IM	available Coating	with an ECTFI	E-
Valve seat		Stainles	s Steel	Stainles	s Steel	Stainless	s Steel	Stainless	s Steel	Special n	naterials upon	
Sealing		WS 382	2	WS 382	22	PTFE		WS 3822	2	request		
Table 3: Material selec	tion for	vacuum	valve pa	allet								
Design	А		В		С		D		E		F	
vacuum range [mbar] [In W.C.]	-2.0 up -0.8 up	to -3.5 to -1.4	<-3.5 up <-1.4 up	p to -14 p to 5.6	<-14 up <-5.6 u	o to -35 p to -14	<-35 up <-14 up	o to -60 o to -24	<-14 uj <-5.6 u	p to -35 ip to -14	<-35 up to -60 <-14 up to -24) 1
Valve pallet	Alumini	um	Stainles	ss Steel	Stainle	ss Steel	Stainle	ss Steel	Stainle	ss Steel	Stainless Stee	əl
Sealing	FEP		FEP		Metal to	o Metal	Metal t	o Metal	PTFE		PTFE	
Special materials (Alu-coa	ated, Tita	nium, Ha	stelloy) a	and highe	er vacuu	m settings	s are ava	ailable up	on requ	est		
Table 7: Flange conne	ction typ	be										
EN 1092-1, Form B1 c	r DIN 25	01, Form	C, PN 1	6; from E	DN 200 F	PN 10	EN or E	DIN othe	r types	upon requ	est	
ANSI 150 lbs RFSF	×						ANSI					
aliacian aliante	xer alsil	s Oni lei	a) cuum		valveti	ion type						
Type Heating	Jonnin N	atenuus.	set var	Nateruun	Flangen	Order	Exmap	le				
SV/E-1-0 - H -	-	- 1] – [-		SV/E-	1-0 – F	1 - 200	– в –	5.0 / -	– B – DIN	1
Design	2		്ഹ്	⊾∕		Materia	als and c	hemical r	esistanc	ce:		
18 ^{0.} 18	10. 0 [mb	MN. T	3 ₀ . ×	(30.		See Vo	ol. 1 "Tec	hnical Fu	ndamen	itals"		
c	Setting Scetting	~			ć	ν́,	้ง ั้ง		, ê	, ⁷ 0	12"	
	5				30	00	001	150	è d	0,00	200	
Flow Capacity Chart					NO	NO	NO	No	NO	No		
airflow in thousands of CFH												
1 2 5 10 20 50 100 200 500												
	╒╧										40	
50 = SV/E-1-	o 🗮									Ϊ	20	
30	. ###			X		1	X.		ŧ į		10	
20									1			;
Te 10								$X \downarrow$				N.
Ē 5				4 /		λ	\mathcal{N}				2	-
a 3			X					4	<u> </u>			mn
2		*	1	1					ΓÜV Τ	ÜV Rheinland G		vaci
1 + + + + + + + + + + + + + + + + + + +				+++	+			+				
20 5	50	100	200	5	00	1,000	2,000			10,000	20,000	
flow rate V	[m³/h]											
The flow capacity chart ha	as been o	letermine	ed with a	calibrate	ed and T	ÜV certifie	ed flow o	capacity te	est ria.		14	
Volume flow V in [m ³ /h] ar	nd CFH r	efer to th	e standa	ard refere	nce con	ditions of	air ISO	6358 (20°	C, 1bar).		6
Conversion to other densi	ties and	temperat	ures refe	er to Vol.	1: "Tech	nical Fund	damenta	als".			PROTEGO	

Vacuum Relief Valve

in a special heat jacketed design

PROTEGO[®] SV/T-0-H

Vacuum settings:

-7 mbar up to -50 mbar-2.8 In W.C. up to -20 In W.C.Higher and lower vacuum settings upon request.

Function and Description

Table 4. Dimensi

The SV/T-0-H type PROTEGO® valve is a highly developed vacuum relief valve with a valve housing that comes with a heating jacket down to the flange. It is primarily used as a safety device for inbreathing to tanks, containers, and process engineering equipment under difficult operating conditions. This includes extreme weather conditions or products that tend to form polymers at certain temperatures, adhere, or form deposits that negatively influence function (such as bitumen, tar, dust). The valve offers reliable protection against vacuum and prevents the intake of air close to the set vacuum.

When the set vacuum is reached, the valve starts to open and reaches full lift within a 40% vacuum increase. Up to the set vacuum, the tank vacuum is maintained with a seal that is far superior to the conventional standard due to the highly developed manufacturing technology. This feature is ensured by valve seats made of high-grade stainless steel with individually lapped valve pallets and a reinforced housing design. After the vacuum is relieved, the valve reseats and again provides a tight seal.

Special Features and Advantages

- · excellent seal for reducing product losses and emissions
- high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · can be used in areas subject to an explosion hazard
- complete heat jacketed design down to the flange to avoid cold bridges
- maximum permissible heating medium temperature of 320°C / 608°F (at 6 bar / 87 psi)
- a special design that preheats incoming air is also available
- a special design with a heatable valve cover is also available
- at low vacuum settings, the valve pallet cover prevents the set pressure from being distorted by dust or condensate (option)
- · reinforced housing design
- a special design with a mechanical vent pallet lift device is available

Design Types and Specifications

The valve pallet is weight-loaded.

Vacuum valve in basic design with heating SV/T - 0 - H jacket

Additional special devices available upon request.

To select the nominal size (DN) use the capacity chart on the following page									
DN1	80 / 3" *	100 / 4"	150 / 6"	200 / 8"	250 / 10"				
DN2	15 / ½"	15 / 1⁄2"	15 / 1⁄2"	15 / 1⁄2"	15 / ½"				
а	570 / 22.44	570 / 22.44	720 / 28.35	920 / 36.22	1050 / 41.34				
b	275 / 10.83	275 / 10.83	355 / 13.98	405 / 15.94	508 / 20.00				
с	70 / 2.76	60 / 2.36	60 / 2.36	70 / 2.76	70 / 2.76				
d	440 / 17.32	440 / 17.32	590 / 23.23	790 / 31.10	920 / 36.22				
e	450 / 17.72	450 / 17.72	650 / 25.59	750 / 29.53	950 / 37.40				
f	225 / 8.86	225 / 8.86	260 / 10.24	300 / 11.91	350 / 13.78				
	111 1 1 A DNI	50 / 01							

* also available with special flange DN 50 / 2"

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

0000 0000

PROTEGO[®] V/KSM

Vacuum settings:

-5 mbar up to -100 mbar -2 In W.C. up to -40 In W.C. Other vacuum settings upon request.

Function and Description

The PROTEGO® valve V/KSM is a state-of-the-art vacuum relief valve with excellent flow performance made of highgrade synthetic material. It is used as a safety device to relieve vacuum in tanks, containers, and process engineering equipment; it prevents the inbreathing of air until reaching the set vacuum. The valve is a perfect solution for corrosive, polymerizing or sticky media.

The device will start to open as soon as the set vacuum is reached and is fully open within 10% vacuum increase. Continuous investments into research and development have allowed PROTEGO[®] to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working vacuum (MAWV) of the tank and still safely vent the required mass flow.

Due to our highly developed manufacturing technology, the tank pressure is maintained up to the set vacuum, with a seal that is far superior to the conventional standard. This feature is achieved by valve seats made of high-performance plastics and a high grade PTFE seal. After the vacuum is compensated, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

Special Features and Advantages

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- based on 10% technology the set vacuum is close to the opening vacuum which results in best possible pressure management of the system compared to conventional 40%or 100%- technology valves
- the valve pallet is guided within the housing to protect against harsh weather conditions
- corrosion resistant valve
- · weight reduction in comparsion to steel/stainless steel
- smooth surface
- · automatic condensate drain
- · different plastics can be combined
- · maintenance friendly design

Design Types and Specifications

The valve pallet is weight-loaded, and the highest pressure levels are only attained with metal discs.

Vacuum valve in basic design

V/KSM-

Additional special devices available upon request.

Table 1: Dimensions Dimensions in mm / inches								
To select the nominal size (DN), use the flow capacity chart on the following page								
DN	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"			
	57 / 2 24	77 / 2 02	87 / 3.43	126 / 4.96	180 / 7.09			
a	5772.24	1113.03	(115 / 4.53)*	(146 / 5.75)*	(175 / 6.89)*			
h	050 / 40 00	376 / 14.80	373 / 14.69	460 / 18.11	469 / 18.46			
d	2597 10.20		(338 / 13.31)*	(427 / 16.81)*	(437 / 17.20)*			
с	150 / 5.91	200 / 7.87	225 / 8.86	280 / 11.02	350 / 13.78			
d	190 / 7 00	250 / 0.84	200 / 11 91	350 / 13.78	560 / 22.05			
d	180 / 7.09	200/9.04	500711.01	(405 / 15.94)*	(500 / 19.68)*			

* Dimensions in brackets only for PVDF

Table 2: Material selection for housing								
Design	А	В	С					
Housing	PE	PP	PVDF					
Valve seat	PE	PP	PVDF	Special Materials upon request				
Sealing	FPM	FPM	FPM					
Valve pallet	A, C, D	B, C, D	C, D					

Table 3: Material selection for vacuum valve pallet							
Design	А	В	С	D			
Vacuum range [mbar] [In W.C.]	-5.0 up to -17 -2.0 up to -6.8	-5.0 up to -17 -2.0 up to -6.8	-10 up to -32 -4.0 up to -12.8	-30 up to -100 -12 up to -40			
Valve pallet	PE	PP	PVDF	Hastelloy			
Sealing	PTFE	PTFE	PTFE	PTFE			
Spindle guide	PE	PP	PVDF	Hastelloy			
Weight	PE	PP	PVDF	Hastelloy			

Special materials and other vacuum settings are available upon request

Table 4: Flange connection type

EN 1092-1, Form B1 or DIN 2501, Form C, PN 16; from DN 200 PN 10		other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request

KA / 5 / 0309 / GB

PROTEGO® V/KSM

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

Notes:

PROTEGO[®] PV/EL

Settings:

.0 mbar	up to	+210 mbar
.8 In W.C.	up to	+84 In W.C.
5 mbar	up to	-35 mbar
4 In W.C.	up to	-14 In W.C.
	.0 mbar .8 In W.C. 5 mbar 4 In W.C.	.0 mbar up to .8 In W.C. up to 5 mbar up to 4 In W.C. up to

Higher and lower settings upon request.

Function and Description

The PV/EL type PROTEGO[®] valve is a highly developed combined pressure and vacuum relief valve. It is primarily used as a safety device for relieving pressure and vacuum in tanks, containers and process engineering equipment. The valve offers reliable protection against overpressure and excessive vacuum. It prevents also the impermissible loss of product vapors close to the set pressure as well as the intake of air on the vacuum side close to set vacuum.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO[®] to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure or vacuum (MAWP or MAWV) of the tank and still safely vent the required mass flow. The opening characteristic is the same for presssure and vacuum relief.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a seal that is far superior to the conventional standard. This feature is achieved by valve seats made of high grade stainless steel with precisely lapped valve pallets and seats (1) or with an air cushion seal and precisely lapped seats (2). The valve pallets are also available with a PTFE seal to prevent the valve pallet from sticking when sticky products are used, and they enable the use of corrosive media. After the excess pressure is relieved, the valve reseats and provides a tight seal again.

Special Features and Advantages

- · 10% technology for minimum pressure rise up to full lift
- · excellent seal for reducing product losses and emissions
- set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- · high flow capacity
- the valve pallet is guided within the housing to protect against freezing in cold weather
- · can be used in areas subject to an explosion hazard
- · self-actuated condensate drain
- · special design with lifting gear can be purchased

Design Types and Specifications

The valve pallets are weight-loaded. At set pressures greate than 60 mbar (24.1 In W.C.), an elongated construction is used.

There are two different designs

Pressure/vacuum relief valve in basic design

PV/EL - _

Pressure/vacuum relief valve with heating jacket **PV/EL - H**

Additional special devices available upon request.

Any combination of vacuum and pressure levels can be set for the valve. The valve pallets are weight-loaded. When the difference between the pressure and vacuum exceeds 150 mbar / 60.2 In W.C., special valve pallets are used.

Dimensions in mm / inches

To select the nominal size (DN), please use the flow capacity charts on the following pages								
DN	50 / 2"	50 / 2"	80 / 3"	80 / 3"				
Set pressure	≤ +60 mbar ≤ +24.1 in W.C.	> +60 mbar > +24.1 in W.C.	≤ +60 mbar ≤ +24.1 in W.C.	> +60 mbar > +24.1 in W.C.	Dimensions for pressure/			
а	308 / 12.13	443 / 17.44	308 / 12.13	443 / 17.44	vacuum relief valve with			
b	108 / 4.25	108 / 4.25	108 / 4.25	108 / 4.25	heating jacket upon request			
С	165 / 6.50	165 / 6.50	167 / 6.57	167 / 6.57				
d	218 / 8.58	218 / 8.58	218 / 8.58	218 / 8.58				

Table 2: Material selection for housing

Table 1: Dimensions

Design	В	С	
Housing Heating jacket (PV/EL-H)	Steel Steel	Stainless Steel Stainless Steel	
Valve seat	Stainless Steel	Stainless Steel	Special materials upon request
Weather hood	Steel	Stainless Steel	
Protective mesh screen	Stainless Steel	Stainless Steel	

Table 3: Material selection for pressure valve pallet						
Design	А	В	С	D		
Pressure range [mbar] [In W.C.]	+2.0 up to +3.5 +0.8 up to +1.4	>+3.5 up to +14 >+1.4 up to +5.6	>+14 up to +210 >+5.6 up to +84	>+14 up to +210 >+5.6 up to +84	Special material as well as higher set pressure upon	
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request	
Sealing	FEP	FEP	Metal to Metal	PTFE		

Table 4: Material selection for vacuum valve pallet						
Design	А	В	С	D		
Vacuum range [mbar] [In W.C.]	-3.5 up to -5.0 -1.4 up to -2.0	<-5.0 up to -14 <-2.0 up to -5.6	<-14 up to -35 <-5.6 up to -14	<-14 up to -35 <-5.6 up to -14	Special material as well as higher set vacuum upon	
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request	
Sealing	FEP	FEP	Metal to Metal	PTFE		

Table 5: Flange connection type		
EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request

Pressure and Vacuum Relief Valve

PROTEGO[®] PV/EL

Pressure and Vacuum Relief Valve

Flow Capacity Charts

PROTEGO[®] PV/EL

flow rate V [m³/h]

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

PROTEGO® PV/ELR

Settings:

Pressure:	+2.0 mbar	up to	+210 mbar
	+0.8 In W.C.	up to	+84 In W.C.
Vacuum:	-3.5 mbar	up to	-50 mbar
	-1.4 In W.C.	up to	-20 In W.C.

Higher and lower settings upon request

Function and Description

The PV/ELR type PROTEGO® valve is a highly developed combined pressure and vacuum relief valve with excellent flow performance. Typically the valve is installed in the in- and outbreathing lines of tanks, vessels and process apparatus to protect against unallowable high and low pressure. The valve prevents emission losses almost up to the set pressure and prevents air intake almost up to set vacuum.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure or vacuum (MAWP or MAWV) of the tank and still safely vent the required mass flow. The opening characteristic is the same for presssure and vacuum relief.

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure with a tightness that is far superior to the conventional standard. This feature is facilitated by valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged or the vacuum is compensated, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

Special Features and Advantages

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- · high flow capacity
- the valve pallet is guided within the housing to protect against freezing in cold weather
- · can be installed in explosion hazardous areas
- · self-actuated condensate drain
- · compact design saves space
- · special design with lifting gear can be purchased
- · maintenance friendly design

Design Types and Specifications

The valve pallets are weight-loaded. At set pressures greate than 35 mbar (14 In W.C.), an elongated construction is used.

There are two different designs:

Pressure/vacuum relief valve in basic design

Pressure/vacuum relief valve with heating jacket PV/ELR - H

Additional special devices available upon request.

Any combination of vacuum and pressure levels can be set for the valve. The valve pallets are weight-loaded. When the difference between the pressure and vacuum exceeds 150 mbar/ 60.2 In W.C., special valve pallets are used.

PV/ELR - -

Dimensions in mm / inches

To select the nominal size (DN), please use the flow capacity charts on the following pages								
DN	80 / 3"	80 / 3"	100 / 4"	100 / 4"				
Set pressure	≤ +35 mbar ≤ +14 in W.C.	> +35 mbar > +14 in W.C.	≤ +35 mbar ≤ +14 in W.C.	> +35 mbar > +14 in W.C.	Dimensions for pressure/			
а	345 / 13.58	475 / 18.70	345 / 13.58	475 / 18.70	vacuum relief valve with			
b	141 / 5.55	141 / 5.55	141 / 5.55	141 / 5.55	heating jacket upon request			
С	218 / 8.58	218 / 8.58	218 / 8.58	218 / 8.58				
d	353 / 13.90	353 / 13.90	353 / 13.90	353 / 13.90				

Table 2: Material selection for housing

Table 1: Dimensions

	U		
Design	В	С	
Housing Heating jacket (PV/ELR-H)	Steel Steel	Stainless Steel Stainless Steel	
Valve seat	Stainless Steel	Stainless Steel	Special materials upon request
Weather hood	Steel	Stainless Steel	
Protective mesh screen	Stainless Steel	Stainless Steel	

Table 3: Material selection for pressure valve pallet						
Design	А	В	С	D		
Pressure range [mbar] [In W.C.]	+2.0 up to +3.5 +0.8 up to +1.4	>+3.5 up to +14 >+1.4 up to +5.6	>+14 up to +210 >+5.6 up to +84	>+14 up to +210 >+5.6 up to +84	Special material as well as higher set pressure upon	
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request	
Sealing	FEP	FEP	Metal to Metal	PTFE		

Table 4: Material selection for vacuum valve pallet						
Design	А	В	С	D		
Vacuum range [mbar] [In W.C.]	-3.5 up to -5.0 -1.4 up to -2.0	<-5.0 up to -14 <-2.0 up to -5.6	<-14 up to -50 <-5.6 up to -20	<-14 up to -50 <-5.6 up to -20	Special material as well as higher set vacuum upon	
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request	
Sealing	FEP	FEP	Metal to Metal	PTFE		

Table 5: Flange connection type					
EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other types upon request			
ANSI 150 lbs RFSF	ANSI	other types upon request			

Pressure and Vacuum Relief Valve Flow Capacity Charts

PROTEGO[®] PV/ELR

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

Pressure and Vacuum Relief Valve

PROTEGO® VD/SV

Function and Description

The VD/SV type PROTEGO[®] valve is a highly developed pressure and vacuum relief valve with excellent flow performance. It is primarily used as a safety device for relieving pressure and vacuum in tanks, containers and process engineering equipment. The valve offers reliable protection against overpressure and excessive vacuum. It prevents also the impermissible loss of product vapors close to the set pressure as well as the intake of air on the vacuum side close to set vacuum.

When the set point is reached, the valve starts to open and is fully open within 10% pressure increase. This unique 10% "full lift type technology" enables a pressure setting that is only 10% below the maximum allowable working pressure or maximum allowable working vacuum of the tank. Even in the low pressure range the vent has the opening characteristic comparable to a typical high pressure safety relief valve. The full lift type pallets are a result of many years of development. The reliable engineering enables stable valve pallet operation.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set point, with a seal that is far superior to the conventional standard. This feature is achieved by valve seats made of high grade stainless steel with precisely lapped valve pallets and seats (1) or with an air cushion seal and precisely lapped seats (2). The valve pallets are also available with a PTFE seal to prevent the valve pallet from sticking when sticky products are used, and they enable the use of corrosive media.

After the excess pressure is discharged or the vacuum is compensated, the valve reseats and again provides a tight seal.

Special Features and Advantages

- · 10% technology for minimum pressure rise up to full lift
- excellent seal for reducing product losses and emissions
- set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- · high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · can be used in areas subject to explosion hazards
- · self draining
- · best technology for API-tanks

Design Types and Specifications

Any combination of vacuum and pressure levels can be set for the valve. The valve pallets are weight-loaded. Higher pressures can be achieved upon request with a special spring-loaded design. When the difference between the pressure and vacuum exceeds 150 mbar / 60.2 In W.C., special valve pallets are used.

There are two different designs:

Pressure/vacuum valve in basic design

Pressure/vacuum relief valve with heating jacket VD/SV-H

Additional special devices available upon request.

VD/SV- -

Table 1: Dimensions Dimensions in mm / inches									
o select the nominal size (DN), use the flow capacity chart on the following page									
DN	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"		
а	400 / 15.75	490 / 19.29	520 / 20.47	660 / 25.98	760 / 29.92	805 / 31.69	805 / 31.69		
b	355 / 13.98	450 / 17.72	550 / 21.65	790 / 31.10	900 / 35.43	1030 / 40.55	1030 / 40.55		
с	200 / 7.87	295 / 11.61	295 / 11.61	465 / 18.31	550 / 21.65	650 / 25.59	650 / 25.59		

Dimensions of pressure and vacuum relief valves with heating jacket upon request

Table 2: Material selection for housing								
Design	А	В	С					
Housing Heating jacket (VD/SV-H)	Aluminium –	Steel Steel	Stainless Steel Stainless Steel	Option: Housing ECTFE-coated				
Valve seat	Stainless Steel	Stainless Steel	Stainless Steel	Special materials upon request				
Sealing	WS 3822	WS 3822	PTFE					
Cover	Stainless Steel	Stainless Steel	Stainless Steel					

Table 3: Material selection for pressure valve pallet								
Design	А	В	С	D	E	F		
Pressure range [mbar] [In W.C.]	+2.0 up to +3.5 +0.8 up to +1.4	>+3.5 up to +14 >+1.4 up to +5.6	>+14 up to +35 >+5.6 up to +14	>+35 up to +60 >+14 up to +24	>+14 up to +35 >+5.6 up to +14	>+35 up to +60 >+14 up to +24		
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel		
Sealing	FEP	FEP	Metal to metal	Metal to metal	PTFE	PTFE		
Spacial material as well as I	higher set pressu	re upon request						

set pressure upon requ ligi

Table 4: Material selection for vacuum valve pallet								
Design	А	В	С	D	E	F		
Vacuum range [mbar] [In W.C.]	-2.0 up to -3.5 -0.8 up to -1.4	<-3.5 up to -14 <-1.4 up to -5.6	<-14 up to -35 <-5.6 up to -14	<-35 up to -60 <-14 up to +24	<-14 up to -35 <-5.6 up to -14	<-35 up to -60 <-14 up to -24		
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel		
Sealing	FEP	FEP	Metal to Metal	Metal to Metal	PTFE	PTFE		

Special material as well as higher vacuum upon request

Pressure and Vacuum Relief Valve

Flow Capacity Charts

PROTEGO® VD/SV

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

Notes:

Pressure and Vacuum Relief Valve

with pipe-away connection

PROTEGO[®] VD/SV-PA(L)

Function and Description

The VD/SV-PA(L) type PROTEGO[®] valve is a highly developed pressure and vacuum relief valve with excellent flow performance. It is primarily used as a safety device for relieving pressure and breaking vacuum in tanks, containers and process engineering equipment. The valve offers reliable protection against overpressure and excessive vacuum. It prevents also the unacceptable loss of product vapors close to the set pressure as well as the intake of air on the vacuum side close to the set vacuum.

When the set point is reached, the valve starts to open and is fully open within 10% increase. This unique 10% "full lift type technology" enables a pressure setting that is only 10% below the maximum allowable working pressure or maximum allowable working vacuum of the tank. Even in the low pressure range the vent has the opening characteristic comparable to a typical high pressure safety relief valve. The full lift type pallets are a result of many years of development. The reliable engineering enables stable valve pallet operation.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set point, with a seal that is far superior to the conventional standard. This feature is achieved by valve seats made of high grade stainless steel with precisely lapped valve pallets and seats (1) or with an air cushion seal and precisely lapped seats (2). The valve pallets are also available with a PTFE seal to prevent the valve pallet from sticking when sticky products are used, and they enable the use of corrosive media.

After the excess pressure is discharged or the vacuum is compensated, the valve reseats and again provides a tight seal.

Special Features and Advantages

- 10% technology for minimum pressure rise up to full lift
- excellent seal for reducing product losses and emissions
- set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- · high flow capacity
- · can be used in areas subject to explosion hazards
- self draining
- best technology for API-tanks

Design Types and Specifications

Any combination of vacuum and pressure setting can be achieved for the valve. The valve pallets are weight-loaded. Higher pressures can be achieved upon request with a special spring-loaded design. When the difference between the pressure and vacuum exceeds 150 mbar (60.2 In W.C.), special valve pallets are used.

There are two different designs:

Pressure/vacuum valve in basic design VD/SV-PA

Pressure/vacuum relief valve with DN2 > DN1 VD/SV-PAL

Devices with heating jacket and additional special devices available upon request.

Table 1: Dimensions

To select the nominal size (DN), use the flow capacity charts on the following pages VD/SV-PA

DN 1	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"
DN 2	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"
а	405 / 15.95	480 / 18.90	600 / 23.62	805 / 31.69	925 / 36.42	1010 / 39.76	1010 / 39.76
b	390 / 15.35	485 / 19.09	550 / 21.65	660 / 25.98	780 / 30.71	875 / 34.45	875 / 34.45
с	150 / 5.91	180 / 7.09	200 / 7.87	250 / 9.84	300 / 11.81	305 / 12.01	305 / 12.01
d	240 / 9.45	300 / 11.81	330 / 12.99	390 / 15.35	480 / 18.90	555 / 21.85	582 / 22.91
е	165 / 6.50	192 / 7.56	240 / 9.45	350 / 13.78	390 / 15.35	460 / 18.11	460 / 18.11
VD/SV-PAL							
DN 1	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"
DN 2	80 / 3"	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"	350 / 14"
а	395 / 15.55	445 / 17.52	565 / 22.24	770 / 30.31	895 / 35.24	1010 / 39.76	1010 / 39.76
b	400 / 15.74	485 / 19.09	550 / 21.65	655 / 25.79	775 / 30.51	875 / 34.45	885 / 34.45
С	140 / 5.51	143 / 5.63	165 / 6.50	216 / 8.50	267 / 10.51	305 / 12.01	305 /12.01
d	255 / 10.04	308 / 12.13	355 / 13.98	417 / 16.42	505 / 19.88	582 / 22.91	603 / 23.74
е	165 / 6.50	192 / 7.56	240 / 9.45	350 / 13.78	390 /15.35	460 / 18.11	460 / 18.11

Dimensions of pressure and vacuum relief valves with heating jacket upon request

Table 2: Material selection for housing								
Desing	А	В	С					
Housing Heating jacket (VD/SV-PA(L)-H)	Aluminium –	Steel Steel	Stainless Steel Stainless Steel	Option: Housing with ECTFE-lining				
Valve seat	Stainless Steel	Stainless Steel	Stainless Steel	Special materials upon request				
Sealing	WS 3822	WS 3822	PTFE					

Table 3: Material selection for pressure valve pallet								
Design	А	В	С	D	E	F		
Pressure range [mbar] [In W.C.]	+2.0 up to +3.5 +0.8 up to +1.4	>+3.5 up to +14 >+1.4 up to +5.6	>+14 up to +35 >+5.6 up to +14	>+35 up to +60 >+14 up to +24	>+14 up to +35 >+5.6 up to +14	>+35 up to +60 >+14 up to +24		
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel		
Sealing	FEP	FEP	Metal to Metal	Metal to Metal	PTFE	PTFE		

Special material (alu-coated, titan, hastelloy) as well as higher set pressure upon request

Table 4: Material selection for vacuum valve pallet								
Design	А	В	С	D	E	F		
Vacuum range [mbar] [In W.C.]	-2.0 up to -3.5 -0.8 up to -1.4	<-3.5 up to -14 <-1.4 up to -5.6	<-14 up to -35 <-5.6 up to -14	<-35 up to -60 <-14 up to -24	<-14 up to +35 <-5.6 up to +14	<-35 up to -60 <-14 up to -24		
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel		
Sealing	FEP	FEP	Metal to Metal	Metal to Metal	PTFE	PTFE		

Special material (alu-coated, titan, hastelloy) as well as higher set vacuum upon request

Dimensions in mm / inches

Pressure and Vacuum Relief Valve

with pipe-away connection

PROTEGO[®] VD/SV-PA(L)

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

Flow Capacity Charts

PROTEGO® VD/SV-PA(L)

Pressure and Vacuum Relief Valve

made of plastic

PROTEGO® VD/KSM

Settings:

Pressure:	+5.0 mbar	up to	+100 mbar
	+2.0 In W.C.	up to	+ 40 In W.C.
Vacuum:	-5.0 mbar	up to	-100 mbar
	-2.0 In W.C.	up to	- 40 In W.C.

Higher and lower settings upon request

Function and Description

The PROTEGO® valve VD/KSM is a state-of-the-art pressure and vacuum relief valve with excellent flow performance made of highgrade synthetic material. Typically the valve is installed in the in- and out-breathing lines of tanks, vessels and process apparatus to protect against unallowable high or low pressure. The valve prevents emission losses almost up to the set pressure. The valve is a perfect solution for corrosive, polymerizing or sticky media.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure and vacuum (MAWP and MAWV) of the tank and still safely vent the required mass flow. The opening characteristic for pressure and vacuum side is the same.

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure with a tightness that is far superior to the conventional standard. This feature is facilitated by special valve seats made of high quality synthetic material or PTFE. After the excess pressure is discharged or vacuum is compensated, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

Special Features and Advantages

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- based on 10% technology the set pressure is close to the opening pressure which results in best possible pressure management of the system compared to conventional 40%- or 100%- technology valves
- the valve pallet is guided within the housing to protect against harsh weather conditions
- corrosion resistant valve
- weight reduction in comparison to steel/stainless steel
- vacuum side self draining and pressure side condensate drain
- smooth surface
- · different plastics can be combined
- · maintenance friendly design

Design Types and Specifications

The valve pallet is weight-loaded, and the highest pressure levels are only attained with metal discs.

Pressure/vacuum valve in basic design VD/KSM-

Additional special devices available upon request.

Table 1	Table 1: Dimensions Dimensions in mm / inche								
To select the nominal size (DN), use the flow capacity chart on the following page									
DN	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"				
а	376 / 14.80	521 / 20.51	563 / 22.17 (542 / 21.34)*	670 / 26.38 (681 / 26.81)*	917 / 36.10 (952 / 37.48)*				
b	430 / 16.93	575 / 22.64	700 / 27.56 (675 / 26.57)*	825 / 32.48 (880 / 34.65)*	1190 / 46.85 (1100 / 43.31)*				
с	180 / 7.09	250 / 9.84	300 / 11.81	350 / 13.78 (405 / 15.94)*	560 / 22.05 (500 / 19.68)*				

* Dimensions in brackets only for PVDF

Table 2: Material selection for the housing									
Design	А	В	С						
Housing	PE	PP	PVDF						
Valve seat	PE	PP	PVDF	Special Materials upon request					
Sealing	FPM	FPM	FPM	Special Materials upon request					
Pressure valve pallet	A, C, D	B, C, D	C, D						
Vacuum valve pallet	A, C, D	B, C, D	C, D						

Table 3: Material selection for pressure valve pallet					
Design	А	В	С	D	
Pressure range [mbar] [In W.C.]	+5.0 up to +17 +2.0 up to +6.8	+5.0 up to +17 +2.0 up to +6.8	+10 up to +32 +4.0 up to +12.8	+30 up to +100 +12 up to +40	
Valve pallet	PE	PP	PVDF	Hastelloy	
Sealing	PTFE	PTFE	PTFE	PTFE	
Spindle guide	PE	PP	PVDF	Hastelloy	
Weight	PE	PP	PVDF	Hastelloy	

Table 4: Material selection for vacuum valve pallet					
Design	А	В	С	D	
Vacuum range [mbar] [In W.C.]	-5.0 up to -17 -2.0 up to -6.8	-5.0 up to -17 -2.0 up to -6.8	-10 up to -32 -4.0 up to -12.8	-30 up to -100 -12 up to -40	
Valve pallet	PE	PP	PVDF	Hastelloy	
Sealing	PTFE	PTFE	PTFE	PTFE	
Spindle guide	PE	PP	PVDF	Hastelloy	
Weight	PE	PP	PVDF	Hastelloy	

Special materials and other pressure/vacuum settings are available upon request

Table 5: Flange connection type

EN 1092-1, Form B1 or DIN 2501, Form C, PN 16; from DN 200 PN 10	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request

pressure [mbar]

vacuum [mbar]

10

5

50

Flow Capacity Charts

PROTEGO® VD/KSM

500

vacuum - In W.C.

5

3

-2

5000

TÜV Rheinland Grou

τüν

1000

2000

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

200

100

flow rate V [m3/h]

Notes:

Pressure and Vacuum Relief Valve

made of plastic

PROTEGO® VD/KSM-PA

Higher and lower settings upon request

Function and Description

150 / 5.91

200 / 7.87

с

d

The PROTEGO® valve VD/KSM-PA is a state-of-the-art pressure and vacuum relief valve with excellent flow performance made of highgrade synthetic material. Typically the valve is installed in the in- and out-breathing lines of tanks, vessels and process apparatus to protect against unallowable high or low pressure. The valve prevents emission losses almost up to the set pressure. The valve is a perfect solution for corrosive, polymerizing or sticky media.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure and vacuum (MAWP and MAWV) of the tank and still safely vent the required mass flow. The opening characteristic

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure with a tightness that is far superior to the conventional standard. This feature is facilitated by special valve seats made of high quality synthetic material or PTFE. After the excess pressure is discharged or vacuum is compensated, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

Special Features and Advantages

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- · extreme tightness and hence least possible product losses and reduced environmental pollution
- based on 10% technology the set pressure is close to the opening pressure which results in best possible pressure management of the system compared to conventional 40%- or 100%- technology valves
- · the valve pallet is guided within the housing to protect against harsh weather conditions
- · corrosion resistant valve
- · weight reduction in comparison to steel/stainless steel
- · vacuum side self draining and pressure side condensate drain
- smooth surface
- · different plastics can be combined
- · maintenance friendly design

Design Types and Specifications

The valve pallet is weight-loaded, and the highest pressure levels are only attained with metal discs.

Pressure/vacuum valve in basic design Additional special devices available upon

280 / 11.02

370 / 14.57

350 / 13.78 (405 / 15.94)*

VD/KSM-PA-

350 / 13.78

590 / 23.23 (650 / 25.59)*

560 / 22.05 (500 / 19.68)*

bening ch	naracteristic for pr	essure and vacu	ium side is the same.		
Table 1:	Dimensions				Dimensions in mm / inche
To selec	t the nominal size	e (DN), use the f	low capacity chart on the foll	owing page	
DN1	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"
DN2	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"
а	490 / 19.29	650 / 25.59	775 / 30.51 (750 / 29.53)*	930 / 36.61 (958 / 37.72)*	1260 / 49.61 (1200 / 47.24)
b	376 / 14.80	521 / 20.51	563 / 22.17 (523 / 20.59)*	670 / 26.38 (651 / 25.63)*	879 / 34.61 (912 / 35.91)*

225 / 8.86

300 / 11.81

request.

180 / 7.09 300 / 11.81 е 250 / 9.84 Dimensions in brackets only for PVDF

All rights and alterations reserved acc. ISO 16016 - Active data sheet at www.protego.de

200 / 7.87

245 / 9.65

nes

4)*

Table 2: Material selection for	or the housing			
Design	А	В	С	
Housing	PE	PP	PVDF	
Valve seat	PE	PP	PVDF	Special Materials upon request
Sealing	FPM	FPM	FPM	Special Materials upon request
Pressure valve pallet	A, C, D	B, C, D	C, D	
Vacuum valve pallet	A, C, D	B, C, D	C, D	

Table 3: Material selection for pressure valve pallet					
Design	А	В	С	D	
Pressure range [mbar] [In W.C.]	+5.0 up to +17 +2.0 up to +6.8	+5.0 up to +17 +2.0 up to +6.8	+10 up to +32 +4.0 up to +12.8	+30 up to +100 +12 up to +40	
Valve pallet	PE	PP	PVDF	Hastelloy	
Sealing	PTFE	PTFE	PTFE	PTFE	
Spindle guide	PE	PP	PVDF	Hastelloy	
Weight	PE	PP	PVDF	Hastelloy	

Table 4: Material selection for vacuum valve pallet					
Design	А	В	С	D	
Vacuum range [mbar] [In W.C.]	-5.0 up to -17 -2.0 up to -6.8	-5.0 up to -17 -2.0 up to -6.8	-10 up to -32 -4.0 up to -12.8	-30 up to -100 -12 up to -40	
Valve pallet	PE	PP	PVDF	Hastelloy	
Sealing	PTFE	PTFE	PTFE	PTFE	
Spindle guide	PE	PP	PVDF	Hastelloy	
Weight	PE	PP	PVDF	Hastelloy	

Special materials and other pressure/vacuum settings are available upon request

Table 7: Flange connection type

EN 1092-1, Form B1 or DIN 2501, Form C, PN 16; from DN 200 PN 10		EN or DIN	other types upon request
ANSI 150 lbs RFSF			other types upon request
	$\frac{\nabla P^{P}}{\nabla D/KSM-PA} = \frac{Nominal size}{1 - 1 - 1} = \frac{1}{1 - 1} = $	Naterial (vacuum valve pallett vacuum valve pallett reange connection type
	Order example		
	VD/KSM-PA - 200 - A - +15 / - A8.0 / -	A –	
ſ	Materials and chemical resistance:		

See Vol. 1 "Technical Fundamentals"

PROTEGO for safety and environment

Flow Capacity Charts

PROTEGO[®] VD/KSM-PA

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

Notes:

Pressure/Vacuum Relief Valve

Pilot-operated diaphragm valve

PROTEGO® PM/(D)S

- Pressure:
 +10 mbar
 up to
 +300 mbar

 +4 In W.C.
 up to
 +120 In W.C.
- Vacuum: -3.0 mbar up to -7 mbar -1.2 In W.C. up to -2.8 In W.C.

Higher or lower settings upon request.

Function and Description

The PM/(D)S type pilot-controlled PROTEGO® diaphragm valve is a highly developed valve for pressure and vacuum relief. It is primarily used as a safety device for outbreathing in tanks, containers, and process engineering equipment and it also offers reliable protection from vacuum and overpessure. It prevents the intake of air and unacceptable product vapor loss up to the set point. The valve can also be used as inbreathing valve. The main valve is directly controlled when it is exposed to a vacuum; i.e., it functions as a weight-loaded diaphragm valve. This valve is highly suitable under atmospheric conditions and for use in cryogenic service.

The main valve is controlled by a pilot valve. The pilot valve is controlled by the tank pressure. The tank medium does not

continuously flow through the pilot. The set pressure is adjusted at the pilot valve by a corrosion-resistant and low-temperatureresistant permanent magnet.

As the operating pressure increases, the closing force acting on the main valve also rises; i.e. the valve tightness increases to prevent leakage until the set pressure is reached. After the valve responds, it immediately opens completely without any significant increase in pressure (pop open characteristic), and the nominal volumetric flow is discharged through a fully open valve. If this level is exceeded, the pressure increase follows the performance curve ($\Delta p / curve$). Up to the set pressure, the tank pressure is maintained with a tightness that is far superior to the conventional standard due to the superior manufacturing technology. This feature is ensured by valve seats made of highgrade stainless steel with precisely ground valve pallets. After the excess pressure is discharged, the valve reseats and again provides a tight seal.

Special Features and Advantages

- · high degree of safety due to double pilot
- controlled by corrosion-resistant, low-temperature-resistant permanent magnet
- the tank medium does not continuously flow through the pilot valve
- pop-open characteristic from a minimum pressure rise to full
 lift
- · excellent seal for reducing product losses and emissions
- set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- high flow capacity
- the control diaphragm of the main valve is shielded from low temperatures high-level durability
- · can be used in areas subject to an explosion hazard
- · designed for use at low temperatures
- self draining

Design Types and Specifications

The valve is equipped with either a control pilot valve or with one control and emergency pilot valve to ensure optimum operating safety in case of malfunctions or damage.

Two different designs are therefore available:

Basic design of pressure/vacuum relief valve with a **PM/S**-control pilot valve

Basic pressure/vacuum relief valve with a control pilot valve and additional emergency pilot valve PM/DS-

Additional special devices available upon request.

Table 1: Dimensions Dimensions in mm / inches						
To select the nominal size (DN), use the flow capacity charts on the following pages						
DN1	80 / 3"	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"
DN2	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"	350 / 14"
а	225 / 8.86	250 / 9.87	325 / 12.80	375 / 14.76	450 / 17.72	500 / 19.69
b	150 / 5.91	175 / 6.89	225 / 8.86	250 / 9.84	270 / 10.63	300 / 12.81
с	275 / 10.83	330 / 12.99	445 / 17.52	550 / 21.65	665 / 26.18	785 / 30.91
d	370 / 14.57	425 / 16.73	515 / 20.28	590 / 23.23	675 / 26.57	765 / 30.12
е	615 / 24.21	685 / 26.97	770 / 30.31	825 / 32.48	935 / 36.81	1005 / 39.57
f	35 / 1.38	40 / 1.57	40 / 1.57	50 / 1.97	50 /1.97	50 / 1.97
g	160 / 6.30	195 / 7.68	250 / 9.84	315 / 12.40	370 / 14.57	425 / 16.73

Table 2: Material selection for he	ousing		
Design	А	В	
Housing	Aluminium	Stainless Steel	
Valve seat	Stainless Steel	Stainless Steel	
Sealing	KL-C-4106	KL-C-4106	Special materials upon request
Main diaphragm protection	Stainless Steel	Stainless Steel	Special materials upon request
Pilot lines	Stainless Steel	Stainless Steel	
Pilot housing	Stainless Steel	Stainless Steel	
Pilot diaphragm	FEP	FEP	

Table 3: Material selection for valve pallet				
Design	А	В		
Pressure range [mbar] [In W.C.]	-3.0 up to -5* -1.2 up to -2*	<-5 up to -7* <-2 up to -2.8*		
Valve pallet	Aluminium	Stainless steel		
Diaphragm	FEP	FEP		

* The indicated vacuum ranges depend on the nominal sizes and can differ.

The pressure setting can be combined with any vacuum setting

Table 4: Flange connection type		
EN 1092-1, Form B1 or DIN 2501, Form C, PN 16; from DN 200 PN 10	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request

Pressure/Vacuum relief valve

Pilot-operated diaphragm valve

PROTEGO[®] PM/(D)S

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

PROTEGO® PM/(D)S

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

Pressure/Vacuum Relief Valve

Pilot-operated diaphragm valve

PROTEGO[®] PM/F

Vacuum: -3.0 mbar up to -10 mbar -1.2 In W.C. up to -4 In W.C.

Higher or lower settings upon request.

Function and Description

The PM/F type pilot-controlled PROTEGO® diaphragm valve is a highly developed valve for pressure and vacuum relief. It is primarily used as a safety device for outbreathing in tanks, containers, and process engineering equipment and it also offers reliable protection from vacuum and overpessure. It prevents the intake of air and unacceptable product vapor loss up to the set point. The valve can also be used as inbreathing valve. The main valve is directly controlled when it is exposed to a vacuum; i.e., it functions as a weight-loaded diaphragm valve.

The main valve is controlled by a pilot valve. The pilot valve is controlled by the tank pressure. The tank medium does not continuously flow through the pilot. The set pressure is adjusted by stretching or relaxation of the spring.

As the operating pressure increases, the closing force acting on the main valve also rises; i.e. the valve tightness increases to prevent leakage until the set pressure is reached. After the valve responded within 10% pressure rise, it immediately opens completely, and the nominal volumetric flow is discharged through a fully open valve. If this level is exceeded, the pressure increase follows the performance curve (Δp / curve). Up to the set pressure, the tank pressure is maintained with a tightness that is far superior to the conventional standard due to the superior manufacturing technology. This feature is ensured by valve seats made of high-grade stainless steel with precisely ground valve pallets. After the excess pressure is discharged, the valve reseats and again provides a tight seal.

Special Features and Advantages

- · controlled by corrosion-resistant control valve
- the tank medium does not continuously flow through the pilot valve
- · 10% technology for minimum pressure rise up to full lift
- · excellent seal for reducing product losses and emissions
- due to 10%-technology the set pressure is close to full lift pressure and the tank pressure is maintained up to the set point
- the control diaphragm of the main valve is shielded from low temperatures high-level durability
- high flow capacity
- · can be used in areas subject to an explosion hazard
- self draining

Design Types and Specifications

The pilot controlled diaphragm valve is equipped with one control valve (pilot valve). For ensuring optimum operation safety in case of any failures or damages, it is recommended to install an emergency pilot valve.

Basic design of pressure/vacuum relief valve with a **PM/F** control pilot valve

Additional special devices available upon request.

Table 1: Dimensions Dimensions in mm / inches								
To select the nominal size (DN), use the flow capacity charts on the following pages								
DN1	80 / 3"	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"		
DN2	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"	350 / 14"		
а	225 / 8.86	250 / 9.87	325 / 12.80	375 / 14.76	450 / 17.72	500 / 19.69		
b	150 / 5.91	175 / 6.89	225 / 8.86	250 / 9.84	270 / 10.63	300 / 12.81		
с	275 / 10.83	330 / 12.99	445 / 17.52	550 / 21.65	665 / 26.18	785 / 30.91		
d	370 / 14.57	425 / 16.73	515 / 20.28	590 / 23.23	675 / 26.57	750 / 29.53		
е	700 / 27.56	770 / 30.31	860 / 33.86	915 / 36.02	970 / 38.19	1060 / 41.73		
f	35 / 1.38	40 / 1.57	40 / 1.57	50 / 1.97	50 / 1.97	50 / 1.97		

Fable 2: Material selection for housing						
Design	А	В				
Housing	Aluminium	Stainless Steel				
Valve seat	Stainless Steel	Stainless Steel				
Sealing	KL-C-4106	KL-C-4106	Special materials upon request			
Main diaphragm protection	Stainless Steel	Stainless Steel	Special materials upon request			
Pilot lines	Stainless Steel	Stainless Steel				
Pilot housing	Aluminium	Stainless Steel				
Pilot diaphragm	FEP	FEP				

Table 3: Material selection for valve pallet							
Design	А	В					
Pressure range [mbar] [In W.C.]	-3.0 up to -5* <-5 up to -10*		Special materials upon request				
Valve pallet	Aluminium	Stainless steel					
Diaphragm	FEP	FEP					

* The indicated vacuum ranges depend on the nominal sizes and can differ.

The pressure setting can be combined with any vacuum setting

Table 4: Flange connection type					
EN 1092-1, Form B1 or DIN 2501, Form C, PN 16; from DN 200 PN 10	EN or DIN	other types upon request			
ANSI 150 lbs RFSF	ANSI	other types upon request			

Pressure/Vacuum relief valve Pilot-operated diaphragm valve

PROTEGO[®] PM/F

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

PROTEGO® PM/F

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

Materials, Terms and Conversion Tables

Pressure								
1 bar	= 14.504 psi = 29.530 inch Hg = 0.987 atm = 401.47 inch H_2O	1 lb/ft ²	= 47,88 N/m ² = 0,4788 mbar = 0,0470 mm WC					
1 mbar	= 0.0145 psi = 0.0295 inch Hg = 0.4019 inch H_2O = 2.089 lb/ft ²	1 inch WC 1 inch Hg	= 249,08 N/m ² = 2,4908 mbar = 25,4 mm WC = 33,864 mbar					
1 kPa 1 inch H ₂ O 1 Pa	= 10 mbar = 2,49089 mbar = 1 N/m ²	1 psi 1 inch Hg 1 psi	= 68,94757 mbar = 33,8639 mbar = 1 lb/in ²					
Temperatu	re							
To convert of	C in ⁰F use F in ⁰C use	$\begin{array}{rcl} T_{\rm F} &=& 32\\ 0^{\circ}{\rm C} &=& 32\\ 100^{\circ}{\rm C} &=& 21\\ T_{\rm C} &=& 5/8\\ 0^{\circ}{\rm F} &=& -1\\ 100^{\circ}{\rm F} &=& 3 \end{array}$	2 + 1,8 T _C 2ºF 2ºF 9 (T _F - 32) 7,8°C 7,8°C					
Material								
DIN Materia Number	I DIN-Material	ASTM-M	laterial					
0.6020	GG 20	A 278-30	C.I.					
0.7040	GGG 40	A 536-77	7 C.I.					
1.0619	GS-C 25	A 216 G	r. WCB C.S.					
1.4301	G-X6 CrNiMo 18	Α 240 G	r CF 8 M S S					
1.0425	P 265 GH	A 515 G	r. 60 C.S.					
1.4541	X6 CrNiTi 18 10	A 240 G	r. 321 S.S.					
1.4571	X10 CrNiMoTi 18	10 A 240 G	r. 316 Ti S.S.					
3.2581	G-AI-Si 12	A 413	Alu					
Та	Tantal	UNS R0	5200					
2.4610			6455 C-4					
2.4080	G-INIIVIO 17 CI NiCr 21 Mo 14 W/		6022 C-22					
2.4819	NiMo 16 Cr 15 W	UNS N10276 C-276						
The applicat acknowledg In general th CS (Carbon SS (Stainles Hastelloy	ble materials are specir ement: ne following means steel) = 1.0619 or 1. ss steel) = 1.4408 or 1. = 2.4686 or 2.	fied in the qu 0425 4571 4602	otation or the order					
Important of SI-System	differences: US deci	mals in acc	ordance to					
e.g. 1 m 1 km	= 100 cm = 100,00 = 1.000 m = 1.000,0	0 cm (UK/ 00 m (UK/	US: 100.00 cm) US: 1,000.00 m)					
Sealings a	nd Coatings	20						
PVDF =	 polytetrandoroetnyler polyvinylidene fluorid 	e						
PFA =	PFA = perfluoroalkoxy polyme							
FPM 70 =	fluor carbon rubber							
WS 3822 =	aramide and anorgar	nic fibers as w	vell as mineral					
reinforcement materials bonded with NBR rubber ECTFE = ethylene chlorotrifluoro ethylene								
FEP = perfluoroethylene propylene								

DN	10	15	20	25	32	40	50	65	80	100
Size	1/4	1/2	3/4	1	1 ¹ /4	1 ¹ /2	2	2 ¹ / ₂	3	4
DN	125	150	200	250	300	350	400	450	500	600
Size	5	6	8	10	12	14	16	18	20	24
DN	700	800	90	0 10	00 12	00 14	400 1	600	1800	2000
Size	28	32	36	5 40	0 4	8	56	64	72	80
Leng	th									
1 cm	= 0.39	37 in	ch		1 i	nch		-	= 25,4	4 mm
1 m	= 3.28	08 ft			1 f	t =	= 12 ir	nch =	= 0,30	048 m
	= 1.09	36 ya	ards		1	/ard =	= 3 ft	=	= 0,9	144 m
1 km	= 0.62	:1 m	iles		1 r	nile		=	= 1,6	09 km
Area										
1cm ²	= 0.15	50 s	sq inc	h		1 sq	inch	=	6,451	6 cm ²
1 m²	= 10.7	639 s	sq ft			1 sq	ft	=	0,092	29 m²
412	= 1.19	6 5	sq yar	ds		1 sq	yard	=	0,836	5 m²
1km ²	= 100	r A	nectar	es						
	= 0.38	61 5	sq mil	es						
	= 247	ć	acres							
Volun	ne									
1 cm ³	= 0.06	102 0	cu inc	h	1	l cu ir	nch	=1	6,387	70 cm ³
1 liter	= 0.03	531 0	cu ft		-	l cu ft		=	28,3	17 liter
	= 0.21	998 (gal (U	K)		l gal (UK)	=	4,546	51 liter
4 3	= 0.26	428 (gal (U	S)	1	l gal (US)	=	3,78	35 liter
1 m²	= 35.3	15 0	cu ft		1	I cu ft		=(),0283	317m
	= 6.29	19 k	betr. b	arreis	1	i petr.	barre	9 =	0,158	576 m ⁻
Mass										
1 g	= 0.03	527 o	Z		1 oz =	= 28	,35 g			
1 kg	= 2.20	46 lb			1 lb =	= 16	OZ			
					=	= 0,4	1536	<g< td=""><td></td><td></td></g<>		
Veloc	ity and	Volu	me F	low						
1 m/s:	= 196.8	5 ft/r	nin		1 ft/r	nin	=	= .	0,508	3 cm/s
1 km/ł	n = 0.62	14 mp	on I/m=1	(110)	1 mp	on I/m=1	=	= 1,	60934	⊦ km/h 73."
1 m°/r	1 = 4.40	3 ga	I/min	(US)	1 ga	I/min	(US) =	=	0,221	(m ³ /n
	= 3.66	b ga	i/min	(UK)	1 ga	i/min	(UK) =	=	0,273	s m°/n
1 ka/b	= 0.58		nt/mir	1	1 CU	nt/mir) =	= 28,3	07 04	er/min
i kg/n	= 0.03	07 ID/	min		1 10/	11111) ft/b	-	= .	21,21	б кg/п z m3/h
					i cu	10/11	-	= 0,0	12031	/ 111-/11
Torsi	on	700 "				<i>t</i>				
1 NM	= 0.7	/23 lb	r ft		1 lbf	ft	= 1,3	38 Nn	1	
Dens	ity									
1 kg/d	$lm^3 = 62$.43 lb	/cu ft		1 lb/	cu ft	= 0,0	016 kg	g/dm ³	

Safety devices are installed to prevent damage. The requirements need to be defined as early as the engineering stage so that a suitable device can be specified. After delivery and startup, function must be ensured at all times. The comprehensive PROTEGO® program range requires preventive services, assistance during start-up, and qualified maintenance for long term trouble-free operation.

Technical Advice

Experienced PROTEGO[®] professionals are available to answer the many and complex questions regarding application. They are trained to consider issues relating to process engineering from a safety perspective. Standard and tailored solutions are generated based on current regulations and state-of-the-art information.

Training

By offering continuing education and regular training for the employees of our domestic and foreign customers, we make sure that state-of-the-art knowledge is incorporated into system engineering. We regularly conduct training seminars that cover the theory of technical fundamentals, examples of applications and practice in installing and servicing PROTEGO[®] devices. The seminars can be offered either at our place of business or at the customers.

Installation and Servicing

We value service and maintenance just as highly as product quality. Qualified operating and service instructions are sufficient for trained professional technicians to perform maintenance tasks. We can provide our trained field service technicians for installation and servicing, or you can use our authorized workshops. The key is trained personnel who are sufficiently prepared for their tasks in our manufacturing plant. Trained qualified professional shops are given a certificate and are authorized to perform maintenance on PROTEGO[®] devices. We will provide you with contacts in your region.

Research and Development

Our R&D center continuously reviews and develops our devices and incorporates product features relevant to safety engineering. In addition, we develop devices jointly with the customer for customer-specific requirements. The result: Continuous improvement of the performance and quality of flame arresters and valves as well as superior knowledge from basic research, which is incorporated into the design of process engineering systems.

Spare Parts Service

We have original spare parts for you in our headquarter as well as in support centers worldwide. Original spare parts and regular servicing tailored to the respective operating conditions guarantee trouble-free operation.

Germany

PROTEGO® Head Office:

Braunschweiger Flamefilter GmbH Industriestraße 11 38110 Braunschweig

phone: +49(0)5307-809-0 fax: +49(0)5307-7824

email: office@protego.de

USA

PROTEGO (USA) Inc.

497 Jessen Lane Charleston, SC 29492

phone: +1-843-284 03 00 fax: +1-843-284 03 04

email: office@protego.com

Great Britain

PROTEGO UK Ltd.

Studio 1, Europa House Europa Way Britannia Enterprise Park Lichfield, Staffordshire, WS14 9TZ

phone: +44-15 43-42 06 60 fax: +44-15 43-42 06 63

email: uk-office@protego.com

Hungary PROTEGO Ungarn Kft.

H-3528 Miskolc Berzsenyi D. u. 26.

phone: +36-46-381 815 fax: +36-46-381 816

email: protego@t-online.hu

Austria

PROTEGO Armaturen- und Apparatetechnik Ges.m.b.H.

Industriestraße B 16 2345 Brunn am Gebirge

phone: +43-22 36-3 27 20

fax: +43-22 36-3 27 21 12 email: office@protego.co.at

Brasil

PROTEGO-LESER do Brasil Ltda.

Rua Montevideu 486 - Penha BR - CEP 21020-290 Rio de Janeiro RJ

phone: +55-21-25 73 50 90 fax: +55-21-25 73 82 81

email: protegoleser@protegoleser.com.br

India

PROTEGO Equipment Pvt., Ltd.

R-665, TTC. Industrial Area MIDC, Rabale Navi Mumbai, 400 701

phone: +91-22-27 69 11 56 fax: +91-22-27 69 20 85

email: sales@protego-india.com

Spain

PROTEGO España

Pintor Serra Santa, 19 08860 Castelldefels

phone: +34-93-6 34 21 65 fax: +34-93-6 64 44 64

email: es-office@protego.com

Netherlands

PROTEGO Nederland

Blei 23 1261 PG Blaricum

phone: +31-35-5 26 35 78 fax: +31-35-5 26 74 13

email: ton.kerkmeer@protego.nl

Switzerland Ramseyer AG

Industriestraße 32 3175 Flamatt

phone: +41-31-7 44 00 00 fax: +41-31-7 41 25 55

email: info@ramseyer.ch

France

S.I.D. Steiblé Ingenierie et Distribution SARL

43 Rue Jacques Mugnier 68200 Mulhouse

phone: +33-3-89 60 62 70 fax: +33-3-89 60 62 75

email: info@sid-steible.fr

Middle East

PROTEGO Middle East

P.O. Box. 261505 LOB19, 0809, JAFZ Dubai, UAE

phone: +971-4-8 86 50 05 fax: +971-4-8 86 50 55

email: sanjiv.advani@protego.com

China

PROTEGO China

Room 730A, German Centre, No. 88 Keyuan Rd. Shanghai, 201203

phone: +86-21-28 98 65 58 fax: +86-21-28 98 65 90

email: yan.zhang@protego.com

