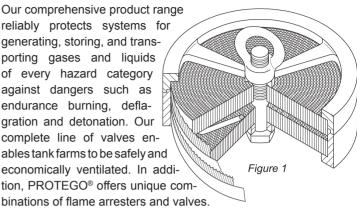
PROTEGO® Pressure/Vacuum Relief Valves with Flame Arrester - end-of-line

Volume 7



More than 50 years ago, PROTEGO® started developing special devices for protecting systems against explosions as well as pressure and vacuum relief valves that meet the highest standards for performance, pressure conservation, and tight seals. This yielded the original Braunschweiger FLAMEFILTER® (Fig. 1) as well as a series of additional innovations that led to numerous patents and imitators. In close cooperation with scientific institutions, continued technical challenges were overcome to meet the increasing requirements for safety and environmental protection.

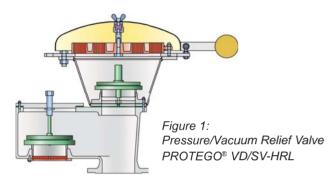
Today, these products are used throughout the world under the brand names PROTEGO® and FLAMEFILTER® mainly for the following applications:

- 1 In tank farms for refineries and chemical plants
- 2 In processing plants for chemical and pharmaceutical industries
- (3) In vapour combustion plants
- In ship building, offshore platforms, in loading facilities
- 5 In vapour recovery systems
- (6) As component for machineries and devices
- In biogas and landfill applications
- In flare systems

Our comprehensive product range reliably protects systems for generating, storing, and transporting gases and liquids of every hazard category against dangers such as endurance burning, deflagration and detonation. Our complete line of valves enables tank farms to be safely and economically ventilated. In addition, PROTEGO® offers unique com-

All of our devices are tested by independent national and international third parties in the world's largest test facility and have got at least one of the many certifications. The actual performance of the devices is determined in a modern flow measuring test rig to obtain reliable data for their practical use.

PROTEGO®, FLAMEFILTER®, and FLAMMENFILTER® are international trademarks owned by Braunschweiger Flammenfilter GmbH.



The working principle and location of the installation of valves on tanks and apparatus is discussed in "Technical Fundamentals" (Vol. 1). In this chapter pressure/vacuum relief valves with integrated flame arrester units – end-of-line – are introduced.

Function and Description

These valves are used to protect process units and equipment (i.e. tanks, pipelines) from exceeding maximum allowable operating pressures and vacuum. In addition theses devices protect against atmospheric deflagration. Some of the devices are also designed to protect against endurance burning (Figure 1).

PROTEGO® Pressure Relief Valves with an integrated flame arrester unit provide protection against unacceptable overpressure, atmospheric deflagration and endurance burning. In addition the devices reduce emissions almost up to the set pressure.

PROTEGO® Vacuum Relief Valves with an integrated flame arrester unit provide protection against unacceptable vacuum and atmospheric deflagration. In addition they avoid air intake almost up to the set pressure.

PROTEGO® Pressure Vacuum Relief Valves with an integrated flame arrester unit fulfil all the above mentioned functions for pressure and vacuum relief and protect against atmospheric deflagration or against atmospheric deflagration and endurance burning.

The special design of the PROTEGO® valves achieves full lift after 10% overpressure above the set pressure. This "full-lift-type-technology" allows for the use of set pressures just 10% below the maximum allowable working pressure (MAWP or Design Pressure) of the Tank. After just 10% overpressure above set pressure the valve will reach its full capacity to safely relieve the required mass flow. Conventional relief valves for low pressure applications need 80%-100% overpressure (API 2000) for reaching full lift and full relieving capacity. They open later and shut off earlier, which results in unnecessary product losses.

Special features and advantages

Specific investments into research and development allowed PROTEGO® to design a valve for low pressure applications providing you with the following advantages:

- 10% "full-lift-type-technology" reducing product losses (possible reduction of breathing losses greater than 30%)
- PROTEGO® valves open later and shut off earlier than conventional valves, which results in optimized pressure management and reduction of blanketing gas losses

- increased flow performance (result: smaller valves can be installed resulting in capital saving)
- · lowest leak rates world wide for low pressure valves
- flame transmission proof for almost any chemical mixture
- valve pallet is guided within the housing to protect against harsh weather conditions
- flame arrester unit is not in contact with product vapour under normal operating conditions, which reduces maintenance intervals
- · endurance burning protection against alcohols

To achieve the highest expectations of the industry for the lowest leak rates, our valve pallets and seats are manufactured from high quality stainless steel and are hand lapped in a special process. Air cushion technology is utilized for low set pressures.

Valves with integrated flame arrester units are available for substances from explosion groups IIA and IIB3 (NEC D and C) and special approvals are available for alcohols.

Main areas of application: as pressure and vacuum valves, as pressure relief valves, as pressure holding/conservation valves, as simple control valves for storage of flammable liquids

PROTEGO® Diaphragm Valves function as pressure vacuum relief valves. The flexible diaphragm allows them to work as a dynamic flame arrester, which provides endurance burning protection. For additional safety these devices are equipped with a static flame arrester unit. This "one-of-a-kind" diaphragm valve can be used under extreme cold weather conditions below freezing and for problem products, which i.e. tend to polymerize (Styrene, Acrylics). A specially designed valve seat combined with the flexible diaphragm prevents blocking of the valve through freezing product vapours at low temperatures. Ice bridges break and fall off through deformation of the diaphragm if pressure increases.

This device has no guiding elements which are likely to stick and keep the device closed.

Main areas of application: same as above in storage of flammable liquids and specifically for storage of monomers.

PROTEGO® High Velocity Pressure Relief Valves (Jet Valves) open and close almost immediately at set point. This function is achieved by an integrated magnet. Through this the overpressure needed from set point to full lift is practically 0%, which clearly reduces emissions. All PROTEGO® high velocity relief valves are tested for oscillating flow and are equipped with a specially designed valve cone and seat, which produces a vertical upright free jet during pressure relief. This ensures an effective leaning of the discharged vapours and reduces the gas concentration to a minimum in direct proximity (i.e. boat deck) of the valve. The devices functions on the working principal of a dynamic flame arrester and is approved for the vapour groups IIA, IIB3 and IIC (NEC D, C and B).

Main areas of application: transport of flammable liquids on tank ships and specially on shore applications.

Installation and servicing

All PROTEGO® devices are delivered with detailed installation and maintenance manuals. Please pay special attention to the warnings on how to remove transport protection if this has been installed in the device to prevent damage during transport. Specially developed check lists are available to ensure correct installation and operation of the device.

Selection and sizing

For a safe operation and protection of a plant, the selection and sizing of the correct PROTEGO® device is necessary. The following criteria have to be considered for pre-selection:

Function: Pressure relief, vacuum relief or combined pressure/ vacuum relief, protection against atmospheric deflagration, or atmospheric deflagration and endurance burning.

Type of Valve: Weight loaded valve, diaphragm valve, high velocity pressure relief valve or high velocity pressure relief valve with combined vacuum valve.

Design: with horizontal or vertical connection to the protected vessel. These valves are weight loaded, so the pallet has to be installed in an horizontal orientation. The maximum achievable pressure setting will depend on the design of the valve. Metallic sealing or soft sealing are important criteria for low leak rates and have to be chosen based on the intended use.

Explosion group: IIA, IIB3, IIC (NEC D, C, B).

Process of combustion: endurance burning or atmospheric deflagration

Operating conditions: Polymerization, condensation, problems which lead to clogging of the FLAMEFILTER®, operating temperature, operating pressure, oxygen concentration, volume flow.

The **valve size** has to be determined so that the volume flow which has to be discharged does not lead to an increase of internal pressure above the maximum allowable working pressure of the vessel to be protected. For sizing the valves certified pressure/volume flow diagrams are provided. The operating conditions have to be known for correct sizing. Sometimes vessels are already equipped with pre-existing nozzles (i.e. old vessels). In such cases the volume flow may have to be discharge over several valves. For correct sizing superimposed and built-up backpressure must be considered.

Valve sizing:

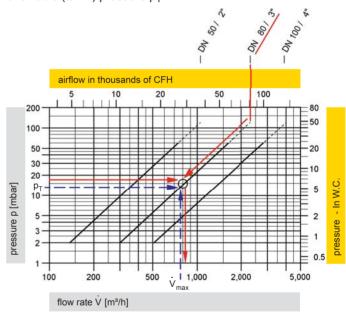
The valve is sized dependent on the required volume flow, which is calculated (\rightarrow Chapter 1), or given.

Given: Volume flow (i.e. in- or out- breathing of a storage tank as sum of the pump rates and thermal breathing) \dot{V}_{max} in m³/h (CFH) and maximum allowable (tank-) pressure p in mbar (ln W.C.).

Desired: Nominal valve size DN

Procedure: The required size of the valve can be taken from the intersection point of \dot{V}_{max} and p valve operating pressure = max. allowable tank pressure. The pressure diagram show the valves flow performance in relation to the opening pressure and is determined at the full lift position of the pallet.

The set pressure of the valve has to be determined such that the required volume flow can be discharged safely. A valve with 10% overpressure characteristic has to be set 10% below the maximum allowable tank pressure.


Many conventional valves require 100% overpressure to reach full lift. For these valves the set pressure will be 50% below of the maximum allowable tank pressure. These valves open earlier and shut off later allowing avoidable product losses.

Alternatively the valve performance may have to be checked if the required size and maximum allowable tank pressure are provided.

Given: (Tank-) nozzle size DN and maximum allowable (tank-) pressure p in mbar (In W.C.)

Desired: flow rate of valve in m³/h (CFH) and set pressure p_{set}

Procedure: The intersection point of the straight line through p and the valve performance curve of the (nozzle-) size DN determine the flow rate \dot{V}_{max} . The set pressure p_{set} will be 10% (PROTEGO® - Technology), 40% or 100% below the maximum allowable (tank-) pressure p_{T} .

The set pressure of the valve (= valve starts to open) the maximum allowable pressure of the equipment minus the valves characteristic overpressure which is required for the valve to reach full lift.

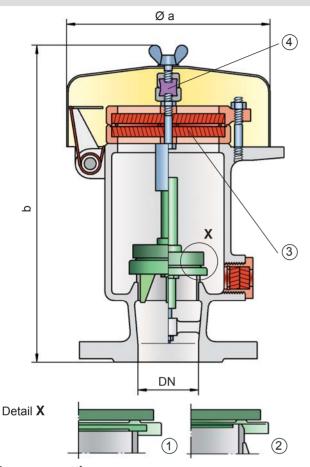
The overpressure percentage of PROTEGO® valves is 10% (unless supplied otherwise). Within 10% overpressure the device will reach its performance at full lift. A further increase in flow performance will follow the curve in the pressure volume flow diagram.

For choosing the correct material the plant and engineering specifications have to be considered.

PROTEGO® Pressure/Vacuum Relief Valves with Flame Arrester – end-of-line

			Pressure	e setting	endurance burning proof prevent flashback in case of atmospheric deflagrations	Explo gro			Design O = horizontal connection X = vertical connection	ing sealing	for critical medium (polymerisation, corrosion, crystallisation)	= Heating jacket, heating coil	
	Туре	Size	positive setting range mbar / in W.C.	negative setting range mbar / in W.C.	O = enduran X = prevent atmosph	ATEX	NEC	Approvals	Design O = horizon¹ X = vertical	O = soft sealing X = metallic sealing	O = for critica (polymer crystallis	O = Heating	Page
Pressure Re	elief Valves, Pa	allet Type						1			'		
Î	P/EB	50 - 80 2" - 3"	+3.5 up to +210/ +1.4 up to +84		0/X	IIA	D	ATEX	Х	0/X		0	8-10
Î	P/EB-E	50 - 80 2" - 3"	+3.5 up to +210/ +1.4 up to +84		0/X	IIB1	ı	ATEX	Х	0/X		0	12-14
1	P/EBR	80 - 100 3" - 4"	+3.5 up to +210/ +1.4 up to +84		0/X	IIA, IIB3	D, C	ATEX	Х	0/X		0	16-19
Î	P/EBR-E	80 - 100 3" - 4"	+3.5 up to +210/ +1.4 up to +84		0 / X	IIB1	-	ATEX	Х	0/X		0	20-22
	BE/HR-D	150 -200 6" - 8"	+2.0 up to +35/ +0.8 up to +14		0/X	IIA	D	ATEX	Х	0/X			24-26
Vacuum Re	lief Valves, Pa	llet Type											
1 0 0 1	SV/E	50 - 300 2" - 12"		-2.0 up to -60/ -0.8 up to -24	Х	IIB3	С	ATEX IMO	0	0/X		0	28-30
Pressure/Va	acuum Relief \	/alves, Pall	et Type										
	PV/EB	50 - 80 2" - 3"	+2.0 up to +210/ +0.8 up to +84	-3.5 up to -35/ -1.4 up to -14	0/X	IIA	D	ATEX	0	0/X		0	32-35
	PV/EB-E	50 - 80 2" - 3"	+2.0 up to +210/ +0.8 up to +84	-3.5 up to -35/ -1.4 up to -14	0 / X	IIB1	-	ATEX	0	0/X		0	36-39
	PV/EBR	80 - 100 3" - 4"	+2.0 up to +210/ +0.8 up to +84	-3.5 up to -50/ -1.4 up to -20	0/X	IIA, IIB3	D	ATEX	0	0/X		0	40-44
	PV/EBR-E	80 - 100 3" - 4"	+2.0 up to +210/ +0.8 up to +84	-3.5 up to -50/ -1.4 up to -20	0/X	IIB1	_	ATEX	0	0/X		0	46-49
R	VD/SV-AD and VD/SV-ADL	80 - 150 3" - 6"	+3.5 up to +35/ +1.4 up to +14	-2.0 up to -35/ -0.8 up to -14	Х	IIB3	С	ATEX	Х	0/X			50-53

	Туре	Size	Pressur positive setting range mbar / in W.C.	e setting negative setting range mbar / in W.C.	O = endurance burning proof X = prevent flashback in case of atmospheric deflagrations	Explo gro ATEX	osion oup	Approvals	Design O = norizontal connection X = vertical connection	O = soft sealing X = metallic sealing	O = for critical medium (polymerisation, corrosion, crystallisation)	O = Heating jacket, heating coil	Page
Pressure/	/acuum Relief \	/alves, Pall	et Type (Co	ontinuation)								
	VD/SV-HR	80 - 100 3" - 4"	+3.5 up to +35/ +1.4 up to +14	-2.0 up to -35/ -0.8 up to -14	0/X	IIA, IIB3	D, C	ATEX	Х	0/X			54-58
T	VD/SV-HRL	100 -150 4" - 6"	+3.5 up to +35/ +1.4 up to +14	-2.0 up to -35/ -0.8 up to -14	0/X	IIA	D	ATEX	X	0/X			60-63
	VD/TS	50 - 300 2" - 12"	+3.5 up to +50/ +1.4 up to +20	-2.0 up to -25/ -0.8 up to -10	X	IIB3	С	ATEX FM	Х	0/X			64-67
Pressure/	/acuum Relief \	/alves, Dia	hragm Va	lves									
	UB/SF	80 - 150 3" - 6"	+3.5 up to +140/ +1.4 up to +56	-3.5 up to -35/ -1.4 up to -16	0/X	IIB3	С	ATEX	Х	0	0	0	68-75
	UB/DF	80 - 150 3" - 6"	+3.5 up to +140/ +1.4 up to +56		0/X	IIB3	С	ATEX	Х	0	0	0	76-81
	UB/VF	80 - 150 3" - 6"		-3.5 up to -35/ -1.4 up to -16	0 / X	IIB3	С	ATEX	Х	0	0	0	82-85
Pressure Relief Valves, High Velocity Valve													
	DE/S	80 - 150 3" - 6"	+100 up to +500/ +40 up to +200		0/X	IIB3	С	ATEX	X	Х			86-88
	DE/S-MK VI	80 - 150 3" - 6"	+60 up to +350/ +24 up to +140		0/X	IIB3, IIC	C, B	ATEX IMO	Х	Х			90-93



Pressure Relief Valve

deflagration- and endurance burning-proof

PROTEGO® P/EB

Pressure settings:

+3.5 mbar up to +210 mbar +1.4 ln W.C. up to +84 ln W.C.

Higher pressure settings upon request.

Function and Description

The deflagration-proof and endurance burning-proof P/EB type PROTEGO® valve is a highly developed pressure relief valve with an integrated flame arrester unit. It is primarily used as a safety device for flame transmission proof outbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and prevents product losses almost up to the set pressure; it also protects against atmospheric deflagration as well as endurance burning if stabilized burning occurs. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. The P/EB valve is available for substances of explosion group IIA (NEC group D MESG > 0.90 mm).

When the set pressure is reached, the valve starts to open and reaches full lift within 10% overpressure. This unique 10% technology enables a set pressure that is only 10% below the maximum allowable working pressure (MAWP) of the tank. After years of development, this typical opening characteristic of a safety relief valve is now also available for the low pressure range.

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is en-

sured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with a high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use in corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank. If additional mixture continues to flow and stabilized burning occurs, the integrated flame arrester unit prevents flashback as a result from endurance burning. The valve is protected and also fulfils its function under this severe service condition. The spring loaded weather hood opens as soon as the fusible element (4) melts.

The valve can be used up to an operating temperature of +60°C / 140°F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- · requires only 10% overpressure to full lift
- through 10% technology higher set pressures can be used which results in product loss reduction compared to conventional 80% and 100% overpressure technology vents (compare API 2000)
- more design flexibility through higher reseating pressures; vents reseat when conventional vent is still discharging costly product or nitrogen
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- the valve disc is guided within the housing to protect against harsh weather conditions
- can be used as protective system according ATEX in areas subject to explosion hazards (94/9/EC)
- PROTEGO® flame arrester unit provides protection against atmospheric deflagration and endurance burning
- flame arrester unit integrated into valve saves space, weight and reduces cost
- flame arrester unit protected from clogging through product vapour
- flame arrester unit has a low pressure drop
- · flame transmission proof condensate drain
- · maintenance friendly design
- modular design enables individual FLAMEFILTER® and valve pallet to be replaced

Design Types and Specifications

The valve disc is weight-loaded. At set pressure >80 mbar (32.1 In W.C.), an elongated design is used

There are two different designs:

Pressure relief valve, basic design

P/EB - -

Pressure relief valve with heating jacket

P/EB - H

(max. heating fluid temperature +85°C / 185°F)

Additional special devices available upon request

Table 1: Dime	Dimensions in mm / inches					
To select the r	To select the nominal size (DN), please use the flow capacity chart on the following page					
DN	50 / 2"	50 / 2"	80 / 3"	80 / 3"		
Set pressure	≤ +80 mbar ≤ +32.1 ln W.C.	> +80 mbar > +32.1 ln W.C.	≤ +80 mbar ≤ +32.1 ln W.C.	> +80 mbar > +32.1 ln W.C.		
а	218 / 8.58	218 / 8.58	218 / 8.58	218 / 8.58		
b	287 / 11.30	452 / 17.80	289 / 11.38	454 / 17.87		

Dimensions for Pressure Relief Valve with heating jacket upon request

Table 2: Selection of explosion group

MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	Special approvals upon request
> 0,90 mm	IIA	D	Special approvals upon request

Table 3: Material selection for housing

Design	В	С
Housing Heating jacket (P/EB-H)	Steel Steel	Stainless Steel Stainless Steel
Valve seat	Stainless Steel	Stainless Steel
Weather hood	Steel	Stainless Steel

Special materials upon request

Table 4: Material combination of flame arrester unit

Design	Α
FLAMEFILTER® cage	Stainless Steel
FLAMEFILTER®	Stainless Steel
Spacer	Stainless Steel

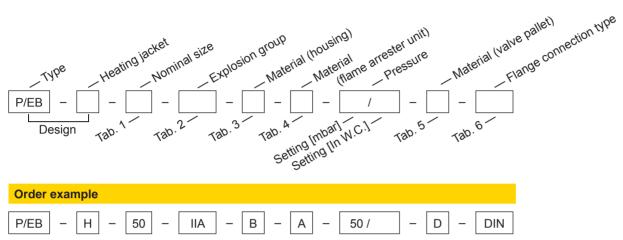
Special materials upon request

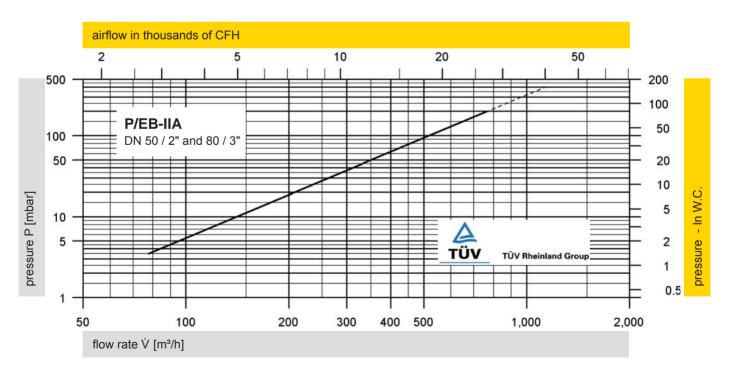
Table 5: Material selection for valve pallet

Design	Α	В	С	D
0 1 1	+3.5 up to +5.0 +1.4 up to +2.0		>+14 up to +210 >+5.6 up to +84	>+14 up to +210 >+5.6 up to +84
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel
Sealing	FEP	FEP	Metal to Metal	PTFE

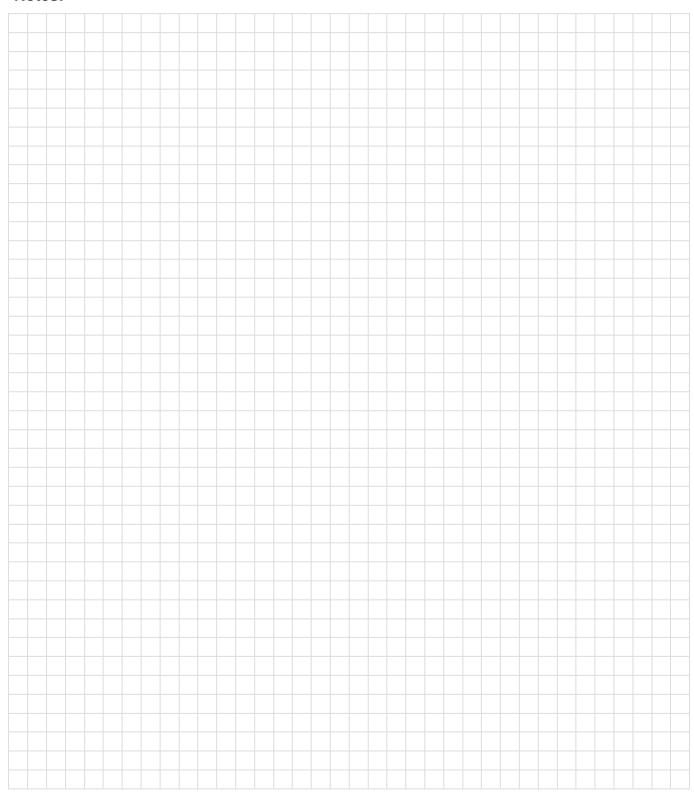
Special materials and higher pressure settings upon request

Table 6: Flange connection type


EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request


Pressure Relief Valve deflagration- and endurance burning-proof

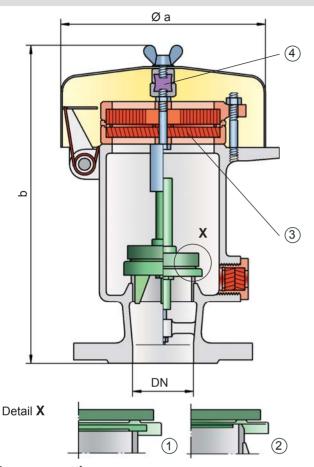
PROTEGO® P/EB


Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

Flow Capacity Chart

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the Standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Technical Fundamentals.

Notes:



Pressure Relief Valve

deflagration- and endurance burning-proof

PROTEGO® P/EB-E

Pressure settings:

+3.5 mbar up to +210 mbar +1.4 ln W.C. up to +84 ln W.C.

Higher pressure settings upon request.

Function and Description

The deflagration proof and endurance burning-proof P/EB-E type PROTEGO® valve is a highly developed pressure relief valve for large flows with an integrated flame arrester unit that is specially used for applications handling ethanol. It is primarily used as a safety device for flame transmission proof outbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and prevents product losses almost up to the set pressure; it also protects against atmospheric deflagration as well as endurance burning if stabilized burning occurs. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. The P/EB-E valve is available for substances of explosion group IIB1 (MESG \geq 0.85 mm) and provides specific protection against deflagration and endurance burning of alcohol/air mixtures (such as ethanol/air).

The valve functions proportional, so the set pressures should be selected in relation to the proportional behaviour (such as a 10%, 40%, or 100% overpressure from the set pressure to the relieving pressure at which the required flow performance is reached).

The tank pressure is maintained up to set pressure with a tightness that is far superior to the conventional standard due to our

state of the art manufacturing. This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank. If additional mixture continues to flow and stabilized burning occurs, the integrated flame arrester unit prevents flashback as a result from endurance burning. The valve is protected and also fulfils its function under this severe service condition. The spring loaded weather hood opens as soon as the fusible element (4) melts.

The valve can be used up to an operating temperature of +60°C / 140°F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- selecting set pressure close to relieving pressure results in product loss reduction
- more design flexibility through higher reseating pressures; vents reseat when conventional vent is still discharging costly product or nitrogen
- the valve disc is guided within the housing to protect against harsh weather conditions
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- can be used as protective system according to ATEX in areas subject to explosion hazards (94/9/EC)
- safe against deflagration and endurance burning of alcohol/ air mixtures from explosion group IIB1
- high flow capacity through large FLAMEFILTER® cross-section, results in low pressure drop
- PROTEGO® flame arrester unit provides protection against atmospheric deflagration and endurance burning
- flame arrester unit integrated into valve saves space, weight and reduces cost
- FLAMEFILTER® protected from clogging caused by product vapours
- · flame transmission proof condensate drain
- · maintenance friendly design
- modular design enables individual FLAMEFILTER® and valve pallets to be replaced

Design Types and Specifications

The valve disc is weight-loaded. At set pressures >80 mbar (32.1 ln W.C.), an elongated design is used

There are two different designs:

Pressure relief valve, basic design

P/EB - E - -

Pressure relief valve with heating jacket

P/EB - E - H

(max. heating fluid temperature +85°C / 185°F)

Additional special devices available upon request

Table 1: Dime	Dimensions in mm / inches			
To select the r				
DN	50 / 2"	50 / 2"	80 / 3"	80 / 3"
Set pressure	≤ +80 mbar ≤ +32.1 ln W.C.	> +80 mbar > +32.1 ln W.C.	≤ +80 mbar ≤ +32.1 ln W.C.	> +80 mbar > +32.1 ln W.C.
а	218 / 8.58	218 / 8.58	218 / 8.58	218 / 8.58
b	287 / 11.30	452 / 17.80	289 / 11.38	454 / 17.87

Dimensions for Pressure Relief Valve with heating jacket upon request

Table 2: Selection of explosion group

MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)
≥ 0.85 mm	IIB1	_

Special approvals upon request

Table 3: Material selection for	or housing		
Design	В	С	
Housing Heating jacket (P/EB-E-H)	Steel Steel	Stainless Steel Stainless Steel	Special materials upon request
Valve seat	Stainless Steel	Stainless Steel	
Weather hood	Steel	Stainless Steel	

Table 4: Material combination of flame arrester unit

Design	А
FLAMEFILTER® cage	Stainless Steel
FLAMEFILTER®	Stainless Steel
Spacer	Stainless Steel

Special materials upon request

Table 5: Material selection for valve pallet

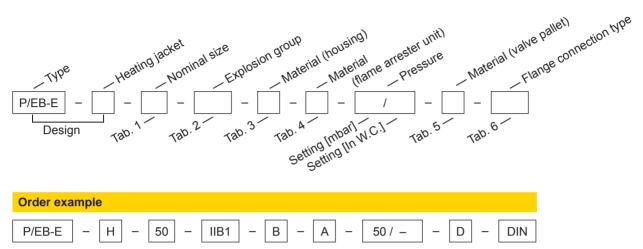
Design	Α	В	С	D
0 1 1	+3.5 up to +5.0 +1.4 up to +2.0		>+14 up to +210 >+5.6 up to +84	
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel
Sealing	FEP	FEP	Metal to Metal	PTFE

Special materials and higher pressure settings upon request

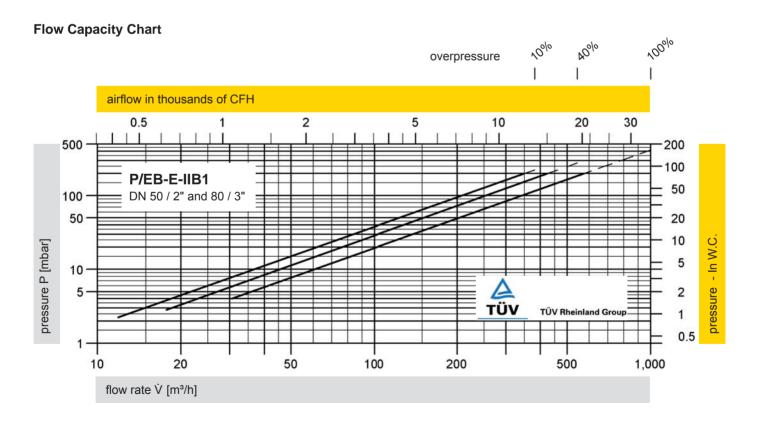
Table 6: Flange connection type

EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other t
ANSI 150 lbs RFSF	ANSI	other ty

other types upon request

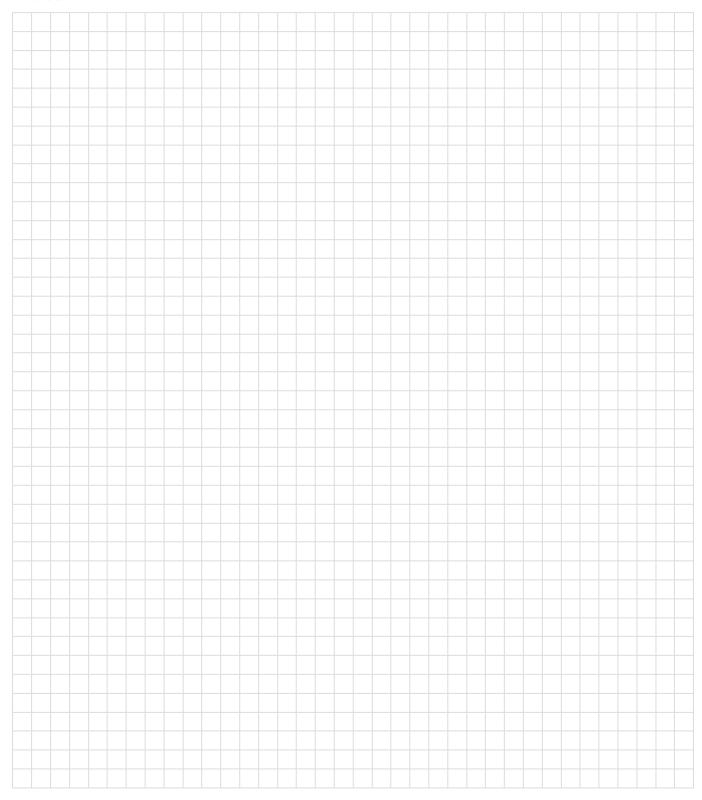


for safety and environment



Pressure Relief Valve deflagration- and endurance burning-proof

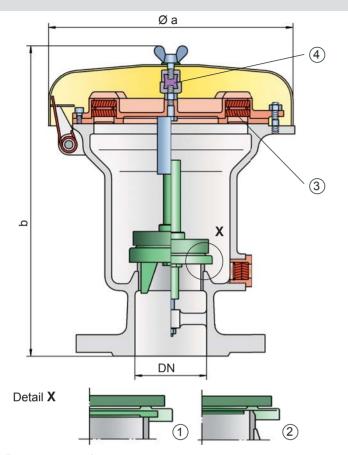
PROTEGO® P/EB-E



Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Technical Fundamentals.

Notes:



Pressure Relief Valve

deflagration- and endurance burning-proof

PROTEGO® P/EBR

Pressure settings:

+3.5 mbar up to +210 mbar +1.4 ln W.C. up to +84 ln W.C. Higher pressure settings upon request.

Function and Description

The deflagration-proof and endurance burning-proof P/EBR type PROTEGO® valve is a highly developed pressure relief valve for large flows with an integrated flame arrester unit. It is primarily used as a safety device for flame transmission proof outbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and prevents product losses almost up to the set pressure; it also protects against atmospheric deflagration as well as endurance burning if stabilized burning occurs. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. P/EBR valves are available for substances from explosion groups IIA and IIB3 (NEC group D and C MESG \geq 0.65 mm).

If the set pressure is reached for a valve approved for explosion Group IIA (NEC group D), the valve starts to open and reaches full lift within 10% overpressure. This unique 10% technology enables a set pressure that is only 10% below the maximum allowable working pressure (MAWP) of the tank. After years of development, this typical opening characteristic of a safety relief valve is now also available for the low pressure range. Valves approved for explosion group IIB3 (NEC group C) function proportionally, so the set pressures should be selected in relation to the proportional behaviour (such as a 10%, 40%, or 100% overpressure from the set pressure to the relieving pressure at which the required flow performance is reached).

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank. If additional mixture continues to flow and stabilized burning occurs, the integrated flame arrester unit prevents flashback as a result from endurance burning. The valve is protected and also fulfils its function under this severe service condition. The spring loaded weather hood opens as soon as the fusible element (4) melts.

The valve can be used up to an operating temperature of $+60^{\circ}$ C / 140° F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- requires only 10% overpressure to full lift for group IIA (NEC group D >0.9 MESG) vapours
- through 10% technology higher set pressures can be used which results in product loss reduction compared to conventional 80% and 100% overpressure technology vents (compare API 2000)
- more design flexibility through higher reseating pressures; vents reseat when conventional vent is still discharging costly product or nitrogen
- the valve disc is guided within the housing to protect against harsh weather conditions
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- can be used as protective system according to ATEX in areas subject to explosion hazards (94/9/EC)
- safe against deflagration and endurance burning for explosion group IIA and IIB3 (NEC group D and C) vapours
- high flow capacity through large FLAMEFILTER® crosssection, results in low pressure drop
- PROTEGO® flame arrester unit provides protection against atmospheric deflagration and endurance burning
- flame arrester unit integrated into valve saves space, weight and reduces cost
- FLAMEFILTER® protected from clogging caused by product vapours
- flame transmission proof condensate drain
- · maintenance friendly design
- modular design enables individual FLAMEFILTER® and valve pallets to be replaced

Design Types and Specifications

The valve disc is weight-loaded. At set pressures >80 mbar (32.1 ln W.C.), an elongated design is used

There are two different designs:

Pressure relief valve, basic design

P/EBR - -

Pressure relief valve with heating jacket

P/EBR - H

(max. heating fluid temperature +85°C / 185°F)

Additional special devices available upon request

Table 1: Dime	Dimensions in mm / inches			
To select the r	To select the nominal size (DN), please use the flow capacity charts on the following pages			
DN	80 / 3"	80 / 3"	100 / 4"	100 / 4"
Set pressure	≤ +80 mbar ≤ +32.1 ln W.C.	> +80 mbar > +32.1 ln W.C.	≤ +80 mbar ≤ +32.1 ln W.C.	> +80 mbar > +32.1 ln W.C.
а	353 / 13.90	353 / 13.90	353 / 13.90	353 / 13.90
b	345 / 13.58	505 / 19.88	345 / 13.58	505 / 19.88

Dimensions for Pressure Relief Valve with heating jacket upon request

Table 2: Selection of explosion group

MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	
> 0,90 mm	IIA	D	Special approvals upon request
> 0,65 mm	IIB3	С	

Table 3: Material selection for housing				
Design	В	С		
Housing Heating jacket (P/EBR-H)	Steel Steel	Stainless Steel Stainless Steel	Special materials upon request	
Valve seat	Stainless Steel	Stainless Steel		
Weather hood	Steel	Stainless Steel		

Table 4: Material combination of flame arrester unit

Design	A
FLAMEFILTER® cage	Stainless Steel
FLAMEFILTER®	Stainless Steel
Spacer	Stainless Steel

Special materials upon request

Table 5: Material selection for valve pallet				
Design	Α	В	С	D
Pressure range [mbar] [In W.C.]	+3.5 up to +5.0 +1.4 up to +2.0	>+5.0 up to +14 >+2.0 up to +5.6	>+14 up to +210 >+5.6 up to +84	>+14 up to +210 >+5.6 up to +84
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel
Sealing	FEP	FEP	Metal to Metal	PTFE

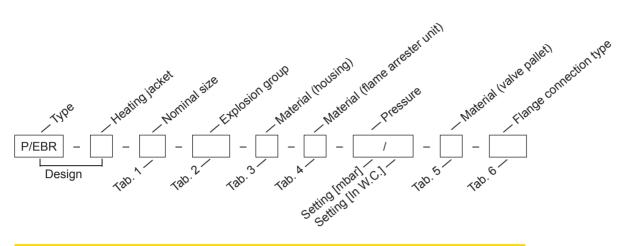
Special materials and higher pressure settings upon request

Table 6: Flange connection type

EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request

PROTEGO

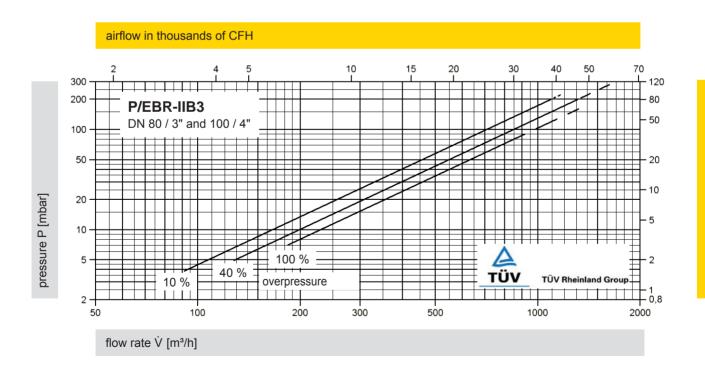
for safety and environment


KA / 7 / 0309 / GB

17

Pressure Relief Valve deflagration- and endurance burning-proof

PROTEGO® P/EBR

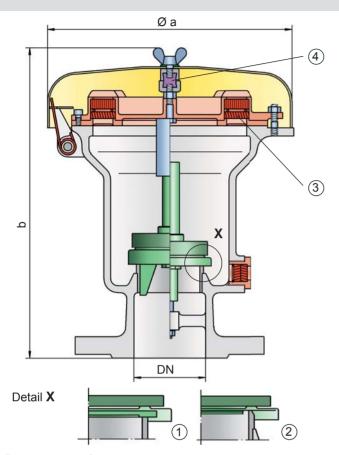


Order example

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

airflow in thousands of CFH 3.5 10 300 120 200 P/EBR-IIA 50 100 DN 80 / 3" and 100 / 4" 50 20 pressure P [mbar] 20 10 5 10 % overpressure 2 -200 300 500 1500 2000 100 150 1000

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Technical Fundamentals.


flow rate V [m3/h]

Pressure Relief Valve

deflagration- and endurance burning-proof

PROTEGO® P/EBR-E

Pressure settings:

+3.5 mbar up to +210 mbar +1.4 ln W.C. up to +84 ln W.C. Higher pressure settings upon request.

Function and Description

The deflagration proof and endurance burning proof P/EBR-E type PROTEGO® valve is a highly developed pressure relief valve for large flows with an integrated flame arrester unit that is specially used for applications handling ethanol. It is primarily used as a safety device for flame transmission proof outbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and prevents product losses almost up to the set pressure; it also protects against atmospheric deflagration as well as endurance burning if stabilized burning occurs. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. The P/EBR-E valve is available for substances of explosion group IIB1 (MESG \geq 0.85 mm) and provides specific protection against deflagration and endurance burning of alcohol/air mixtures (such as ethanol/air).

The valve functions proportional, so the set pressures should be selected in relation to the proportional behaviour (such as a 10%, 40%, or 100% overpressure from the set pressure to the relieving pressure at which the required flow performance is reached).

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due

to our state of the art manufacturing technology. This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank. If additional mixture continues to flow and stabilized burning occurs, the integrated flame arrester unit prevents flashback as a result from endurance burning. The valve is protected and also fulfils its function under this severe service condition. The spring loaded weather hood opens as soon as the fusible element (4) melts.

The valve can be used up to an operating temperature of +60°C / 140°F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- selecting set pressure close to relieving pressure results in product loss reduction
- more design flexibility through higher reseating pressures; vents reseat when conventional vent is still discharging costly product or nitrogen
- the valve disc is guided within the housing to protect against harsh weather conditions
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- can be used as protective system according to ATEX in areas subject to explosion hazards (94/9/EC)
- safe against deflagration and endurance burning of alcohol/ air mixtures from explosion group IIB1
- high flow capacity through large flame filter cross-section, results in low pressure drop
- PROTEGO® flame arrester unit provides protection against atmospheric deflagration and endurance burning
- flame arrester unit integrated into valve saves space, weight and reduces cost
- FLAMEFILTER® protected from clogging caused by product vapours
- flame transmission proof condensate drain
- · maintenance friendly design
- modular design enables individual FLAMEFILTER® and valve pallets to be replaced

20 KA / 7 / 0309 / GB

Design Types and Specifications

The valve disc is weight-loaded. At set pressures >80 mbar (32.1 ln W.C.), an elongated design is used

There are two different designs:

Pressure relief valve, basic design

P/EBR - E - -

Pressure relief valve with heating jacket

P/EBR - E - H

(max. heating fluid temperature +85°C / 185°F)

Additional special devices available upon request

Table 1: Dime	Dimensions in mm / inches			
To select the r	To select the nominal size (DN), please use the flow capacity chart on the following page			
DN	80 / 3"	80 / 3"	100 / 4"	100 / 4"
Set pressure	≤ +80 mbar ≤ +32.1 ln W.C.	> +80 mbar > +32.1 ln W.C.	≤ +80 mbar ≤ +32.1 ln W.C.	> +80 mbar > +32.1 ln W.C.
а	353 / 13.90	353 / 13.90	353 / 13.90	353 / 13.90
b	345 / 13.58	505 / 19.88	345 / 13.58	505 / 19.88

Dimensions for Pressure Relief Valve with heating jacket upon request

Table 2: Selection of explosion group

MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)
≥ 0,85 mm	IIB1	_

Special approvals upon request

Table 3: Material selection for housing					
Design	В	С			
Housing Heating jacket (P/EBR-E-H)	Steel Steel	Stainless Steel Stainless Steel	Spe		
Valve seat	Stainless Steel	Stainless Steel			
Weather hood	Steel	Stainless Steel			

Special materials upon request

Table 4: Material combination of flame arrester unit

Design	А
FLAMEFILTER® cage	Stainless Steel
FLAMEFILTER®	Stainless Steel
Spacer	Stainless Steel

Special materials upon request

Table 5: Material selection for valve pallet

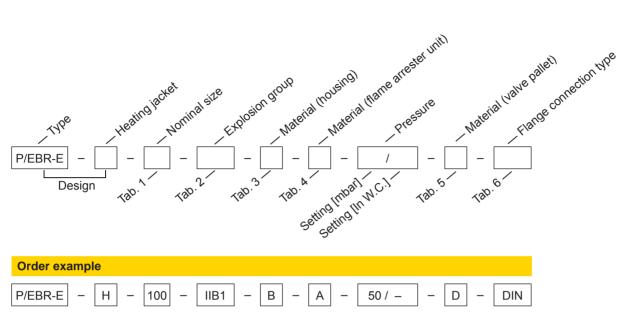
Design	Α	В	С	D
0 1 1	+3.5 up to +5.0 +1.4 up to +2.0	>+5.0 up to +14 >+2.0 up to +5.6	>+14 up to +210 >+5.6 up to +84	>+14 up to +210 >+5.6 up to +84
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel
Sealing	FEP	FEP	Metal to Metal	PTFE

Special materials and higher pressure settings upon request

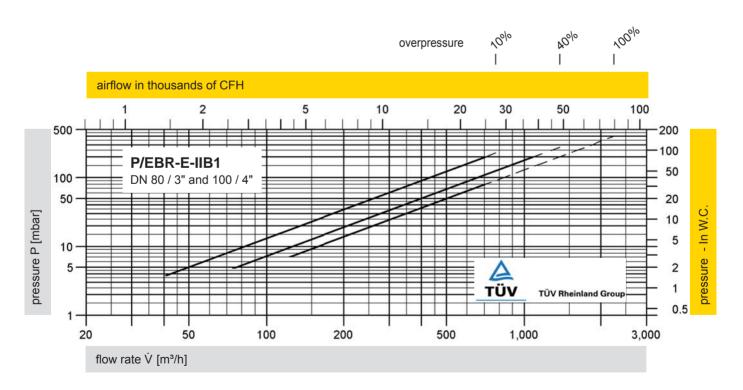
Table 6: Flange connection type

EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN
ANSI 150 lbs RFSF	ANSI

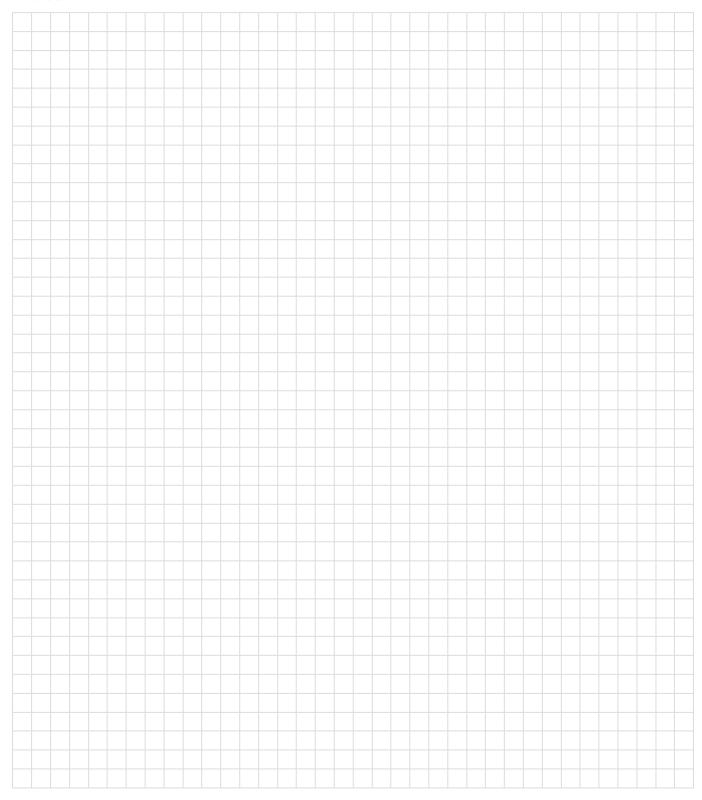
other types upon request


for safety and environment

KA / 7 / 0309 / GB 21


Pressure Relief Valve deflagration- and endurance burning-proof

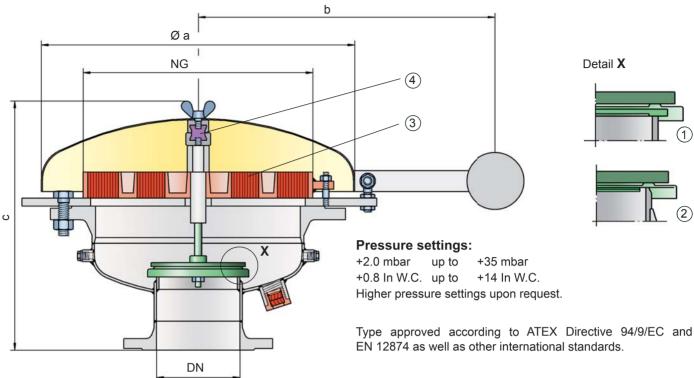
PROTEGO® P/EBR-E


Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

Flow Capacity Chart

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Technical Fundamentals.

Notes:



Pressure Relief Valve deflagration- and endurance burning-proof

PROTEGO® BE/HR-D

Function and Description

The deflagration-proof and endurance burning-proof BE/HR-D type PROTEGO® valve is a highly developed pressure relief valve with an integrated flame arrester unit. It is primarily used as a safety device for flame transmission proof outbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and prevents product losses almost up to the set pressure; it also protects against atmospheric deflagration as well as endurance burning if stabilized burning occurs. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. The BE/HR-D valve is available for substances of explosion group IIA (NEC group D MESG > 0.9 mm).

When the set pressure is reached, the valve starts to open and reaches full lift within 40% overpressure. The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank. If additional mixture continues to flow and stabilized burning occurs, the integrated flame arrester unit prevents flashback as a result from endurance burning. The valve is protected and also fulfils its function under this severe service condition. The spring loaded weather hood opens as soon as the fusible element (4) melts.

The valve can be used up to an operating temperature of $+60^{\circ}$ C / 140° F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Special Features and Advantages

- · requires only 40% overpressure to full lift
- through 40% technology higher set pressures can be used which results in product loss reduction compared to conventional 80% and 100% overpressure technology vents (compare API 2000)
- more design flexibility through higher reseating pressures; vents reseat when conventional vent is still discharging costly product or nitrogen
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- the valve disc is guided within the housing to protect against harsh weather conditions
- can be used as protective system according to ATEX in areas subject to explosion hazards (94/9/EC)
- high flow capacity through large FLAMEFILTER® crosssection, results in low pressure drop
- FLAMEFILTER® provides protection against atmospheric deflagration and endurance burning
- FLAMEFILTER® integrated into valve saves space, weight and reduces cost
- FLAMEFILTER® protected from clogging through product vapours
- · flame-transmission-proof condensate drain
- · maintenance-friendly design

Design and Specifications

The valve disc is weight-loaded.

Pressure relief valve, basic design BE/HR-D-400/...

Additional special devices available upon request

Table 1: Dimensions

Dimensions in mm / inches

To select the nominal size (DN), please use the flow capacity chart on the following page

DN	150 / 6"	200 / 8"
NG	400 / 16"	400 / 16"
а	600 / 23.62	600 / 23.62
b	545 / 21.46	545 / 21.46
С	485 / 19.09	485 / 19.09

NG = Nominal size

Table 2: Selection of explosion group

		3		
	MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	Specie
>	0.90 mm	IIA	D	- Specia

Special approvals upon request

Table 3: Material selection for housing

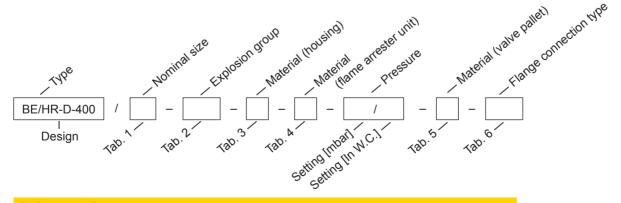
Design	Α	В
Housing	Steel	Stainless Steel
Valve seat	Stainless Steel	Stainless Steel
Weather hood	Steel	Stainless Steel
Flame arrester unit	Α	В

Special materials upon request

Table 4: Material combinations of flame arrester unit

Design	Α	В
FLAMEFILTER® cage	Steel	Stainless Steel
FLAMEFILTER®	Stainless Steel	Stainless Steel

Special materials upon request

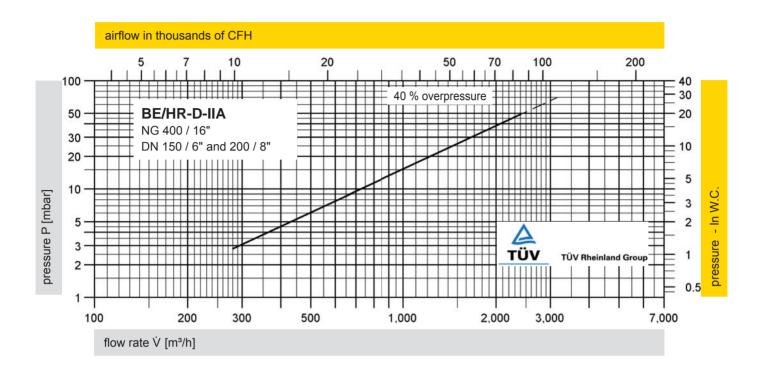

Table 5: Material selection for valve pallet

Design	Α	В	С
Pressure range [mbar] [In W.C.]	+2.0 up to +3.5 +0.8 up to +1.4	>+3.5 up to +14 >+1.4 up to +5.6	>+14 up to +35 >+5.6 up to +14
Valve pallet	Aluminium	Stainless Steel	Stainless Steel
Sealing	FEP	FEP	Metal to Metal

Special materials and higher pressure settings upon request

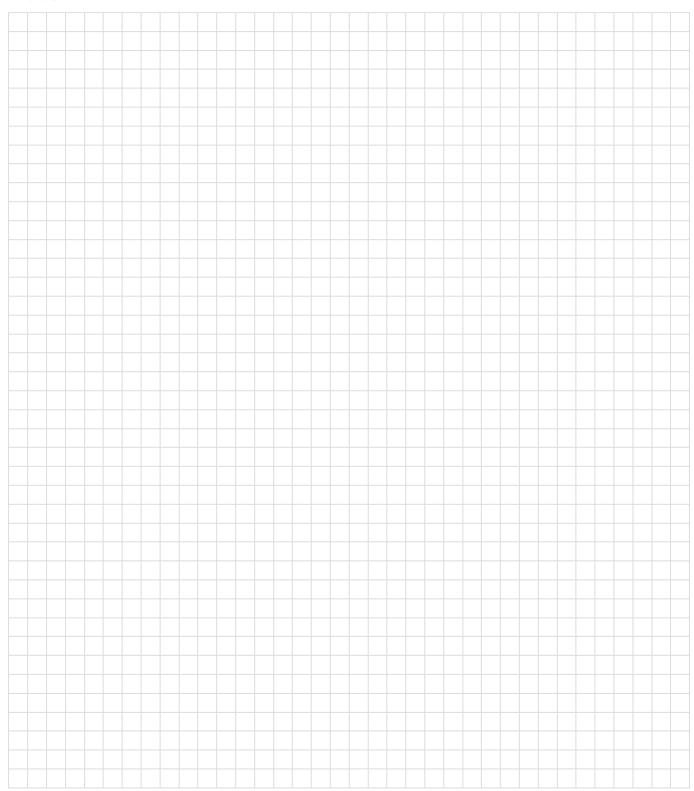
Table 6: Flange connection type

EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request


Order example

BE/HR-D-400 / 150 - IIA - A - A - 7/- - B - DIN

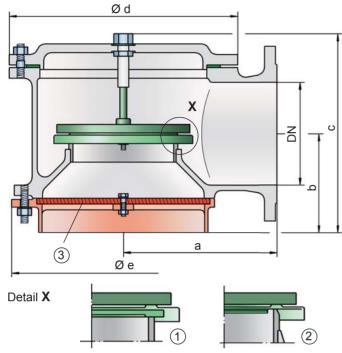
Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"



25

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Technical Fundamentals.

Notes:



Vacuum Relief Valve deflagration-proof

PROTEGO® SV/E

Vacuum settings:

-2.0 mbar up to -60 mbar (-0.2 kPa up to -6 kPa)

-0.8 In W.C. up to -24 In W.C. Higher vacuum settings upon request

Function and Description

The deflagration-proof SV/E type PROTEGO® valve is a state of the art vacuum relief valve with an integrated flame arrester unit. It is primarily used as a safety device for flame transmission proof inbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against vacuum and prevents inbreathing of air almost up to the set pressure; it also protects against atmospheric deflagration. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. The PROTEGO® SV/E valve is available for substances from explosion groups IIA to IIB3 (NEC group D to C MESG ≥ 0.65 mm).

When the set vacuum is reached, the valve starts to open and reaches full lift within 10% overpressure. This unique 10% technology enables a set vacuum that is only 10% above the maximum allowable working vacuum (MAWV) of the tank. After years of development, this typical opening characteristic of a safety relief valve is now also available for the low pressure range.

The tank pressure is maintained up to the set vacuum with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use corrosive fluids. After the vacuum is equalized, the valve reseats and provides a tight seal.

If the valve is used in atmospheres forming an explosive mixture with air and the mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank.

The standard design is tested at an operating temperature up to +60°C / 140°F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000. In addition numerous versions for higher operating temperature are available.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards. Additional certificates from classification associations for use on ships are also available.

Special Features and Advantages

- · requires only 10% overpressure to full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- through 10% technology lower set vacuum can be reached which results in product loss reduction compared to conventional 80% and 100% overpressure technology vents (compare API 2000)
- · optimized flow performance
- the valve disc is guided within the housing to protect against harsh weather conditions
- can be used as protective system according ATEX in areas subject to explosion hazards (94/9/EC)
- FLAMEFILTER® provides protection against atmospheric deflagration
- FLAMEFILTER® integrated into valve saves space, weight and reduces cost
- FLAMEFILTER® protected from clogging through product vapour
- PROTEGO® flame arrester unit has a low pressure drop
- · maintenance friendly design
- modular design enables individual FLAMEFILTER® and valve pallets to be replaced
- · an additional lifting gear can be purchased

Design Types and Specifications

The valve disc is weight-loaded. Higher vacuum can be achieved upon request with a special spring loaded design.

There are four different designs:

vacuum relier valve, basic design	SV/E
Vacuum relief valve with heating jacket (max. heating fluid temperature +85°C / 185°F)	SV/E H
Vacuum relief valve with lifting gear (ship design)	SV/E-S
Vacuum relief valve with lifting gear (ship design) and heating jacket (max. heating fluid temperature +85°C / 185°F)	SV/E-S-H
Additional special devices available upon reques	st

Table 1: Dimensions						Dimension	s in mm / inches
To select the nominal size (DN), pleas			e the flow capacit	y chart on the foll	lowing page		
DN	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"
а	140 / 5.51	170 / 6.69	190 / 7.48	230 / 9.06	300 / 11.81	325 / 12.80	425 / 16.73
b	105 / 4.13	115 / 4.53	125 / 4.92	165 / 6.50	195 / 7.68	230 / 9.06	280 / 11.02
С	240 / 9.45	240 / 9.45	315 / 12.40	405 / 15.94	460 / 18.11	525 / 20.67	575 / 22.64
d	170 / 6.69	235 / 9.25	280 / 11.02	335 / 13.19	445 / 17.52	505 / 19.88	505 / 19.88
е	215 / 8.46	215 / 8.46	255 / 10.04	345 / 13.58	435 / 17.13	470 / 18.50	635 / 25.00

Table 2: Selection of explosion group						
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	Special approvals upon request			
≥ 0,65 mm	IIB3	С	Special approvals upon request			

Table 3: Selection of max. operating temperature						
≤ 60°C / 140°F	≤ 100°C / 212°F	≤ 150°C / 302°F	≤ 180°C / 356°F	≤ 200°C / 392°F	≤ 250°C / 482°F	*upop roquost
Standard (std)	X0 *	X1 *	X2 *	X3 *	X4 *	*upon request

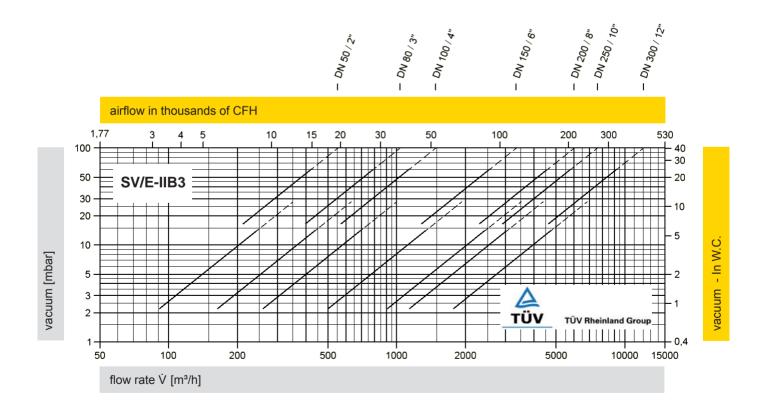
Table 4: Material selection for housing							
Design	Α	В	С				
Housing Heating jacket (SV/E-(S)-H)	Ductile Iron	Steel Steel	Stainless Steel Stainless Steel				
Valve seat	Stainless Steel	Stainless Steel	Stainless Steel	Special materials upon request			
Gasket	WS 3822	WS 3822	PTFE				
Flame arrester unit	Α	В	В				

Table 5: Material combinations of flame arrester unit							
Design	Α	В					
FLAMEFILTER® cage	Ductile Iron	Stainless Steel	Special materials upon request				
FLAMEFILTER®	Stainless Steel	Stainless Steel					

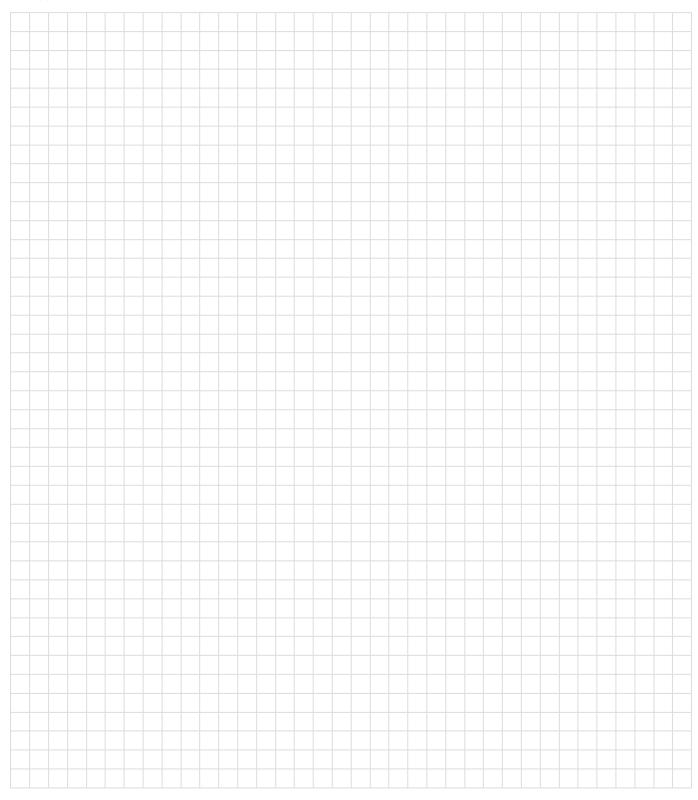
Table 6: Material selection for valve pallet						
Design	Α	В	С	D	E	F
Vacuum range [mbar] [In W.C.]	-2.0 up to -3.5 -0.8 up to -1.4	<-3.5 up to -14 <-1.4 up to -5.6	<-14 up to -35 <-5.6 up to -14	<-35 up to -60 <-14 up to -24	<-14 up to -35 <-5.6 up to -14	<-35 up to -60 <-14 up to -24
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
Sealing Special materials and highe	FEP	FEP	Metal to Metal	Metal to Metal	PTFE	PTFE

Table 7: Flange connection type			
EN 1092-1, Form B1 or DIN 2501, Form C,	PN 16; from DN 200 PN 10	EN or DIN	other types upon request
ANSI 150 lbs RFSF		ANSI	other types upon request

PROTEGO


Vacuum Relief Valve deflagration-proof

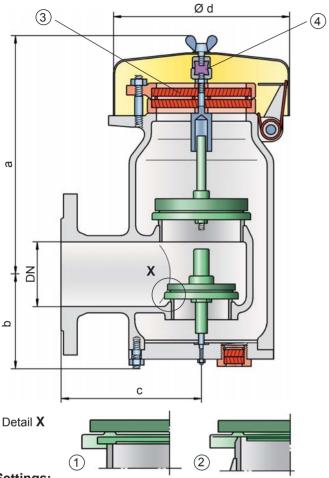
PROTEGO® SV/E


Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

Flow Capacity Chart

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Technical Fundamentals.

Notes:



Pressure/Vacuum Relief Valve

deflagration- and endurance burning-proof

PROTEGO® PV/EB

Settings:

pressure: +2.0 mbar up to +210 mbar

+0.8 in W.C. up to +84 In W.C.

vacuum: -3.5 mbar up to -35 mbar

-1.4 in W.C. up to -14 In W.C.

Higher and lower settings upon request

Function and Description

The atmospheric deflagration and endurance burning proof PV/EB type PROTEGO® valve is a highly developed combined pressure/vacuum relief valve for high flow capacities with an integrated flame arrester unit. It is primarily used as a safety device for flame transmission proof in- and outbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and vacuum, prevents the inbreathing of air and product losses almost up to the set pressure and also protects against atmospheric deflagration and endurance burning if stabilized burning occurs. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. The PROTEGO® PV/EB valve is available for substances of explosion group IIA (NEC group D MESG > 0.9 mm).

When the set pressure is reached, the valve starts to open and reaches full lift within 10% over pressure. This unique 10% technology enables a set pressure that is only 10% below the maximum allowable working pressure (MAWP) or maximum allowable working vacuum (MAWV) of the tank. After years of development, this typical opening characteristic of a safety relief valve is now also available for the low pressure range.

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank. If additional mixture continues to flow and stabilized burning occurs, the integrated flame arrester unit prevents flashback as a result from endurance burning. The valve is protected and also fulfils its function under this severe service condition. The spring loaded weather hood opens as soon as the fusible element (4) melts.

The valve can be used up to an operating temperature of +60°C / 140°F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Special Features and Advantages

- · requires only 10% overpressure to full lift
- through 10% technology higher set pressures can be used which results in product loss reduction compared to conventional 80% and 100% overpressure technology vents (compare API 2000)
- increased design flexibility through higher reseating pressures; vents reseat when conventional vent is still discharging costly product or nitrogen
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- the valve disc is guided within the housing to protect against harsh weather conditions
- can be used as protective system according ATEX in areas subject to explosion hazards (94/9/EC)
- FLAMEFILTER® provides protection against atmospheric deflagration and endurance burning
- FLAMEFILTER® integrated into valve saves space, weight and reduces cost
- FLAMEFILTER® protected from clogging through product vapour
- PROTEGO® flame arrester unit has a low pressure drop
- · flame transmission proof condensate drain
- · maintenance friendly design
- · special design with lifting gear can be purchased

Design Types and Specifications

Almost any combination of vacuum and pressure levels can be set for the valve. The valve discs are weight loaded. When the difference between the pressure and vacuum exceeds 150 mbar / 60.2 ln W.C., special valve discs are used.

There are two different designs:

Pressure/vacuum relief valve, basic design

PV/EB- -

Pressure/vacuum relief valve with heating jacket (max. heating fluid temperature +85°C / 185°F)

PV/EB- H

Additional special devices available upon request

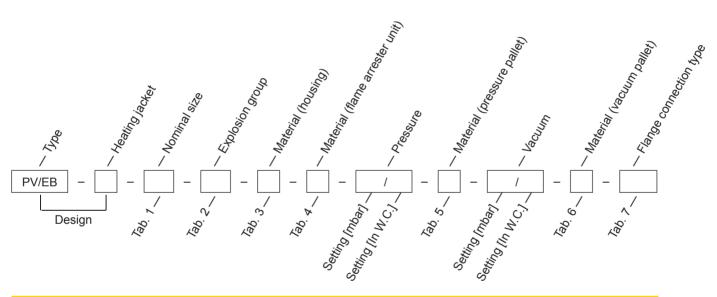
Table 1: Dime	nsions				Dimensions in mm / inches				
To select the n	To select the nominal size (DN), please use the flow capacity charts on the following pages								
DN	50 / 2"	50 / 2"	80 / 3"	80 / 3"					
Set pressure	≤ +60 mbar ≤ +24.1 in W.C.	> +60 mbar > +24.1 in W.C.	≤ +60 mbar ≤ +24.1 in W.C.	> +60 mbar > +24.1 in W.C.	Dimensions for pressure/				
а	308 / 12.13	443 / 17.44	308 / 12.13	443 / 17.44	vacuum relief valve with				
b	108 / 4.25	108 / 4.25	108 / 4.25	108 / 4.25	heating jacket upon request				
С	165 / 6.50	165 / 6.50	167 / 6.57	167 / 6.57					
d	218 / 8.58	218 / 8.58	218 / 8.58	218 / 8.58					

Table 2: Selection of explosion group						
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	Chesial approvals upon request			
> 0,90 mm	IIA	D	Special approvals upon request			

Table 3: Material selection for housing						
Design	В	С				
Housing Heating jacket (PV/EB-H)	Steel Steel	Stainless Steel Stainless Steel	Special materials upon request			
Valve seats	Stainless Steel	Stainless Steel				
Weather hood	Steel	Stainless Steel				

Table 4: Material combination of flame arrester unit							
Design	Α						
FLAMEFILTER® cage	Stainless Steel	Special materials upon request					
FLAMEFILTER®	Stainless Steel	Special materials upon request					
Spacer	Stainless Steel						

Tab	Table 5: Material selection for pressure valve pallet						
Des	sign	Α	В	С	D		
Pre	essure range [mbar] [In W.C.]	+2.0 up to +3.5 +0.8 up to +1.4		>+14 up to +210 >+5.6 up to +84		Special material as well as higher set pressure upon	
Valv	ve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request	
Sea	aling	FEP	FEP	Metal to Metal	PTFE		

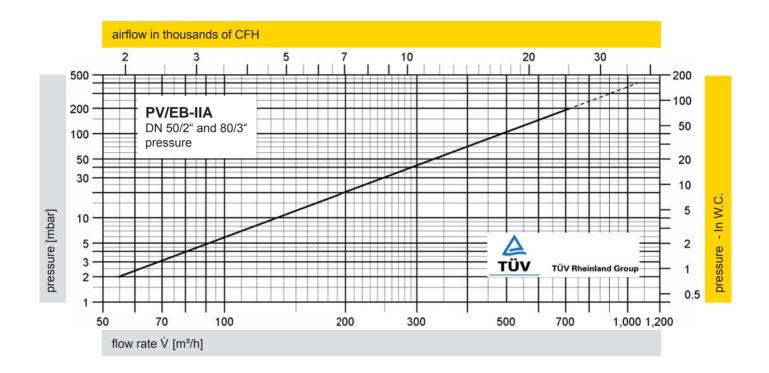


Pressure/Vacuum Relief Valve deflagration- and endurance burning-proof

PROTEGO® PV/EB

Table 6: Material selection for vacuum pallet						
Design	Α	В	С	D		
Vacuum range [mbar] [In W.C.]	-3.5 up to -5.0 -1.4 up to -2.0	<-5.0 up to -14 <-2.0 up to -5.6	<-14 up to -35 <-5.6 up to -14	<-14 up to -35 <-5.6 up to -14	Special material as well as higher set vacuum upon	
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request	
Sealing	FEP	FEP	Metal to Metal	PTFE		

T	able 7: Flange connection type		
E	N 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other types upon request
Α	NSI 150 lbs RFSF	ANSI	other types upon request

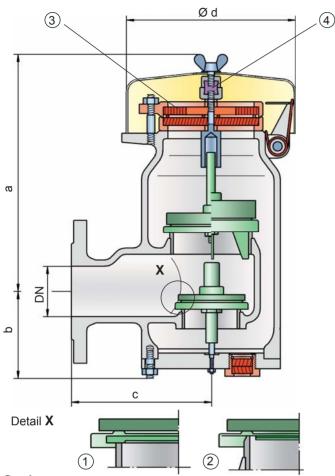

Order example

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

KA / 7 / 0309 / GB

PROTEGO® PV/EB

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Technical Fundamentals.



Pressure/Vacuum Relief Valve

deflagration- and endurance burning-proof

PROTEGO® PV/EB-E

Settings:

pressure: +2.0 mbar up to +210 mbar

+0.8 ln W.C. up to +84 ln W.C. **vacuum:** -3.5 mbar up to -35 mbar

-1.4 In W.C. up to -14 In W.C.

Higher and lower settings upon request

Function and Description

The deflagration-proof and endurance burning-proof PV/EB-E type PROTEGO® valve is a highly developed combined pressure/ vacuum relief valve for high flow capacities with an integrated flame arrester unit that is specially used for applications handling ethanol. It is primarily used as a safety device for flame transmission proof in- and outbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and vacuum, prevents the inbreathing of air and product losses almost up to the set pressure and also protects against atmospheric deflagration as well as endurance burning if stabilized burning occurs. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. The PROTEGO® PV/EB-E valve is available for substances of explosion group IIB1 (MESG ≥ 0.85 mm) and provides specific protection against deflagration and endurance burning of alcohol/air mixtures (such as ethanol/air).

The valve functions proportionally, so the set pressures should be selected in relation to the proportional behaviour (such as a 10%, 40%, or 100% overpressure from the set pressure to the relieving pressure at which the required flow performance is reached).

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the set pressure is exceeded, gas/product-vapour air mixtures are released to the atmosphere. If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank. If additional mixture continues to flow and stabilized burning occurs, the integrated flame arrester unit prevents flashback as a result from endurance burning. The valve is protected and also fulfils its function under this severe service condition. The spring loaded weather hood opens as soon as the fusible element (4) melts.

The valve can be used up to an operating temperature of +60°C / 140°F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- selecting set pressure close to relieving pressure results in product loss reduction
- increased design flexibility through higher reseating pressures; vents reseat when conventional vent is still discharging costly product or nitrogen
- the valve disc is guided within the housing to protect against harsh weather conditions
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- can be used as protective system according to ATEX in areas subject to explosion hazards (94/9/EC)
- safe against deflagration and endurance burning of alcohol/ air mixtures from explosion group IIB1
- high flow capacity through large FLAMEFILTER® cross-section, results in low pressure drop
- FLAMEFILTER® provides protection against atmospheric deflagration and endurance burning
- FLAMEFILTER® integrated into valve saves space, weight and reduces cost
- FLAMEFILTER® protected from clogging caused by product vapours
- · flame transmission proof condensate drain
- · maintenance friendly design
- modular design enables individual FLAMEFILTER® and valve pallets to be replaced
- · special design with lifting gear can be purchased

Design Types and Specifications

Almost any combination of vacuum and pressure levels can be set for the valve. The valve discs are weight loaded. When the difference between the pressure and vacuum exceeds 150 mbar / 60.2 In W.C., special valve discs are used.

There are two different designs:

Pressure/vacuum relief valve, basic design

PV/EB-E- -

Pressure/vacuum relief valve with heating jacket PV/EB-E- H (max. heating fluid temperature +85°C / 185°F)

Additional special devices available upon request

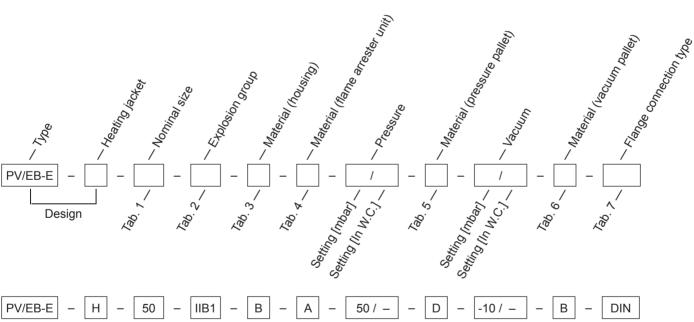
Table 1: Dime	Dimensions in mm / inches							
To select the n	To select the nominal size (DN), please use the flow capacity charts on the following pages							
DN	50 / 2"	50 / 2"	80 / 3"	80 / 3"				
Set pressure	≤ +60 mbar ≤ +24.1 ln W.C.	> +60 mbar ≤ +24.1 In W.C	≤ +60 mbar ≤ +24.1 In W.C	> +60 mbar ≤ +24.1 In W.C	Dimensions for Pressure/			
а	308 / 12.13	443 / 17.44	308 / 12.13	443 / 17.44	Vacuum Relief Valve with			
b	108 / 4.25	108 / 4.25	108 / 4.25	108 / 4.25	heating jacket upon request			
С	165 / 6.50	165 / 6.50	167 / 6.57	167 / 6.57				
d	218 / 8.58	218 / 8.58	218 / 8.58	218 / 8.58				

Table 2: Selection of explosion group						
MESG Expl. Gr. (IEC/CEN) Gas Group (NEC/NFPA)						
≥ 0,85 mm	IIB1	_	Special approvals upon request			

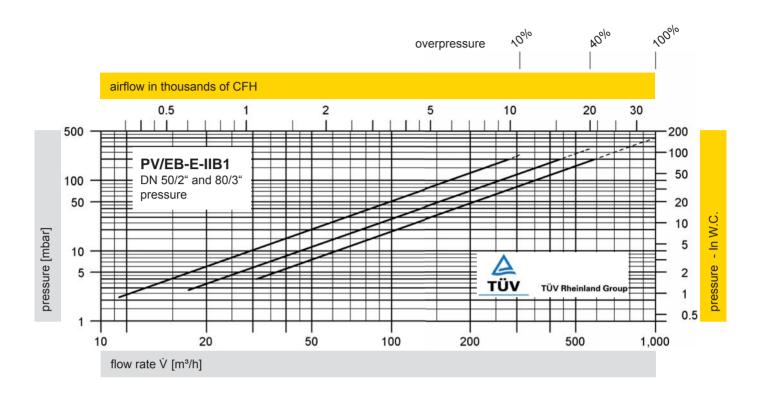
Table 3: Material selection for housing						
Design	В	С				
Housing Heating jacket (PV/EB-E-H)	Steel Steel	Stainless Steel Stainless Steel	Special materials upon request			
Valve seats	Stainless Steel	Stainless Steel				
Weather hood	Steel	Stainless Steel				

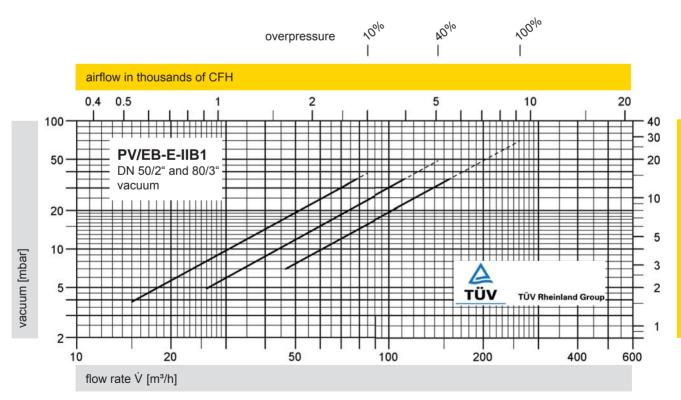
Table 4: Material combination of flame arrester unit							
Design	A						
FLAMEFILTER® cage	Stainless Steel	Special materials upon request					
FLAMEFILTER®	Stainless Steel	Special materials upon request					
Spacer	Stainless Steel						

Table 5: Material selection for pressure valve pallet						
Design	Α	В	С	D		
Pressure range [mbar] [ln W.C.]	+2.0 up to +3.5 +0.8 up to +1.4		>+14 up to +210 >+5.6 up to +84		Special material as well as higher set pressure upon	
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request	
Sealing	FEP	FEP	Metal to Metal	PTFE		



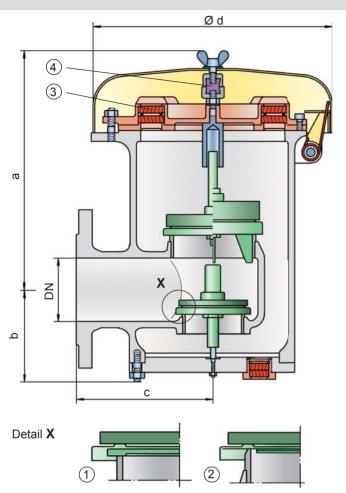
PROTEGO® PV/EB-E


Table 6: Material selection for vacuum pallet							
Design	Α	В	С	D			
Vacuum range [mbar] [In W.C.]	-3.5 up to -5.0 -1.4 up to -2.0	<-5.0 up to -14 <-2.0 up to -5.6	<-14 up to -35 <-5.6 up to -14	<-14 up to -35 <-5.6 up to -14	Special material as well as higher set vacuum upon		
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request		
Sealing	FEP	FEP	Metal to Metal	PTFE			


Table 7: Flange connection type					
EN 1092-1, Form B1 or DIN 2501, Form C, PN 16					
ANSI 150 lbs RFSF	ANSI	other types upon request			

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

PROTEGO® PV/EB-E


The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in [m³/h] and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Technical Fundamentals.

vacuum - In W.C.

PROTEGO® PV/EBR

Settings:

pressure: +2.0 mbar up to +210 mbar

+0.8 In W.C. up to +84 In W.C.

vacuum: -3.5 mbar up to -50 mbar

-1.4 In W.C. up to -20 In W.C.

Higher and lower settings upon request

Function and Description

The deflagration-proof and endurance burning-proof PV/EBR type PROTEGO® valve is a highly developed combined pressure/vacuum relief valve for high flow capacities with an integrated flame arrester. It is primarily used as a safety device for flame transmission proof in- and outbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and vacuum, prevents the inbreathing of air and product losses almost up to the set pressure and also protects against atmospheric deflagration as well as endurance burning if stabilized burning occurs. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. PROTEGO® PV/EBR valves are available for substances from explosion groups IIA to IIB3 (NEC group D to C MESG \geq 0.65 mm).

The valve functions proportional, so the set pressures should be selected in relation to the proportional behaviour (such as a 10%, 40%, or 100% overpressure from the set pressure to the relieving pressure at which the required flow performance is reached).

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank. If additional mixture continues to flow and stabilized burning occurs, the integrated flame arrester unit prevents flashback as a result from endurance burning. The valve is protected and also fulfils its function under this severe service condition. The spring loaded weather hood opens as soon as the fusible element (4) melts.

The valve can be used up to an operating temperature of +60°C / 140°F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- selecting set pressure close to relieving pressure results in product loss reduction
- more design flexibility through higher reseating pressures; vents reseat when conventional vent is still discharging costly product or nitrogen
- the valve disc is guided within the housing to protect against harsh weather conditions
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- can be used as protective system according to ATEX in areas subject to explosion hazards (94/9/EC)
- high flow capacity through large FLAMEFILTER® cross-section, results in low pressure drop
- FLAMEFILTER® provides protection against atmospheric deflagration and endurance burning
- FLAMEFILTER® integrated into valve saves space, weight and reduces cost
- FLAMEFILTER® protected from clogging caused by product vapours
- · flame transmission proof condensate drain
- · maintenance friendly design
- modular design enables individual FLAMEFILTER® and valve pallets to be replaced
- · special design with lifting gear can be purchased

40 KA / 7 / 0309 / GB

Design Types and Specifications

Almost any combination of vacuum and pressure levels can be set for the valve. The valve discs are weight loaded. When the difference between the pressure and vacuum exceeds 150 mbar / 60.2 In W.C., special valve discs are used.

There are two different designs:

Pressure/vacuum relief valve, basic design

PV/EBR- -

Pressure /vacuum relief valve with heating jacket PV/EBR- H (max. heating fluid temperature +85°C / 185°F)

Additional special devices available upon request

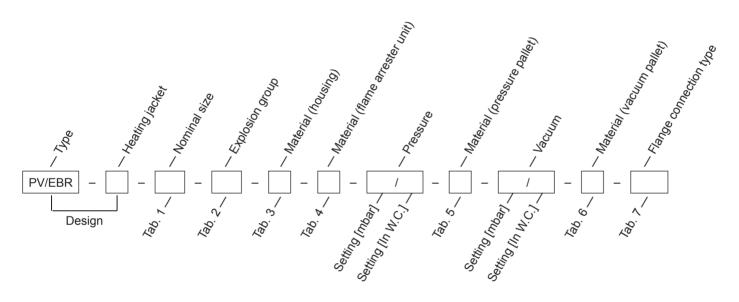
Table 1: Dime	Dimensions in mm / inches				
To select the n	ominal size (DN), ple				
DN	80 / 3"	80 / 3"	100 / 4"	100 / 4"	
Set pressure	≤ +35 mbar ≤ +14 In W.C.	> +35 mbar > +14 ln W.C.	≤ +35 mbar ≤ +14 ln W.C.	> +35 mbar > +14 ln W.C.	 Dimensions for pressure/ vacuum relief valve with
а	345 / 13.58	475 /18.70	345 / 13.58	475 /18.70	
b	141 / 5.55	141 / 5.55	141 / 5.55	141 / 5.55	heating jacket upon request
С	218 / 8.58	218 / 8.58	218 / 8.58	218 / 8.58	
d	353 / 13.90	353 / 13.90	353 / 13.90	353 / 13.90	

Table 2: Selection of explosion group							
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)					
> 0,90 mm	IIA	D	Special approvals upon request				
≥ 0,65 mm	IIB3	С					

Table 3: Material selection for housing						
Design	В	С				
Housing Heating jacket (PV/EBR-H)	Steel Steel	Stainless Steel Stainless Steel	Special materials upon request			
Valve seats	Stainless Steel	Stainless Steel				
Weather hood	Steel	Stainless Steel				

Table 4: Material combination of flame arrester unit							
Design	A						
FLAMEFILTER® cage	Stainless Steel	Special materials upon request					
FLAMEFILTER®	Stainless Steel	Special materials upon request					
Spacer	Stainless Steel						

Table 5: Material selection for pressure valve pallet						
Design	Α	В	С	D		
Pressure range [mbar] [In W.C.]	+2.0 up to +3.5 +0.8 up to +1.4		>+14 up to +210 >+5.6 up to +84		Special material as well as higher set pressure upon	
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request	
Sealing	FEP	FEP	Metal to Metal	PTFE		



PROTEGO® PV/EBR

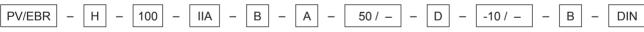
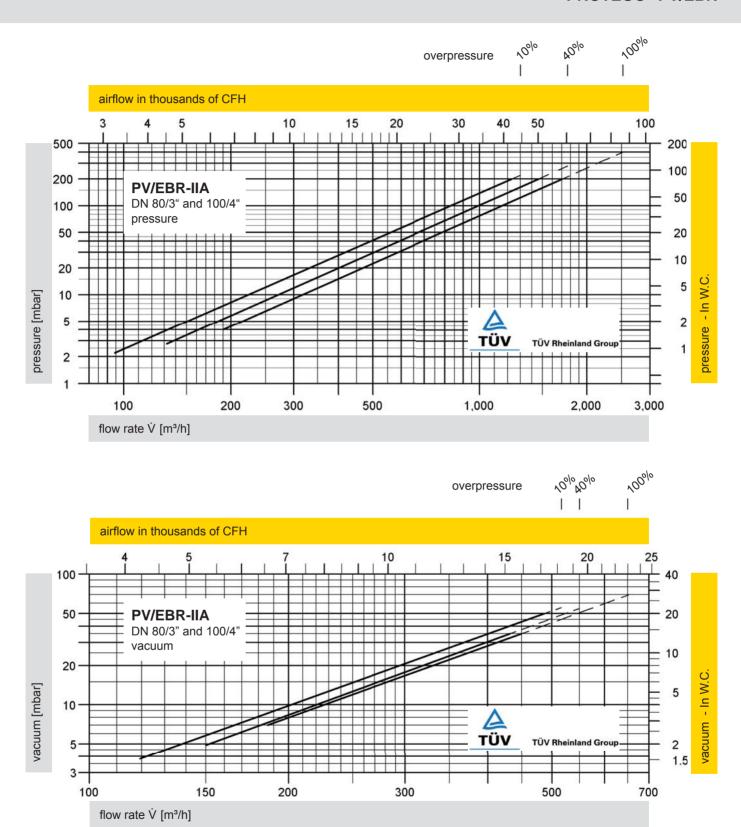

Table 6: Material selection	Table 6: Material selection for vacuum pallet				
Design	Α	В	С	D	
Vacuum range [mbar] [In W.C.]	-3.5 up to -5.0 -1.4 up to -2.0	<-5.0 up to -14 <-2.0 up to -5.6		<-14 up to -50 <-5.6 up to -20	Special material as well as higher set vacuum upon
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request
Sealing	FEP	FEP	Metal to Metal	PTFE	

Table 7: Flange connection type

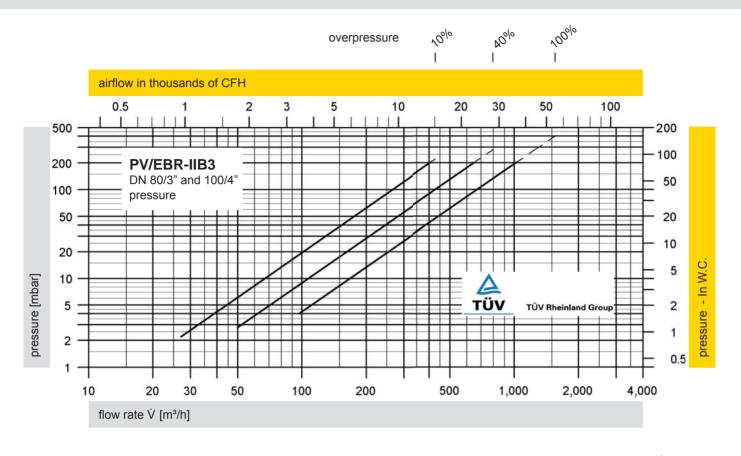
EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request

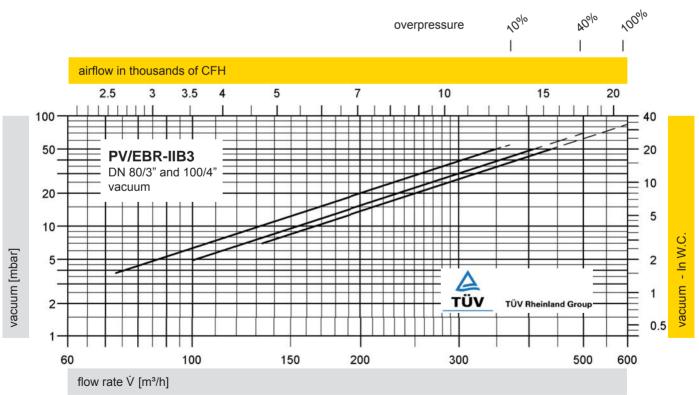


Order example

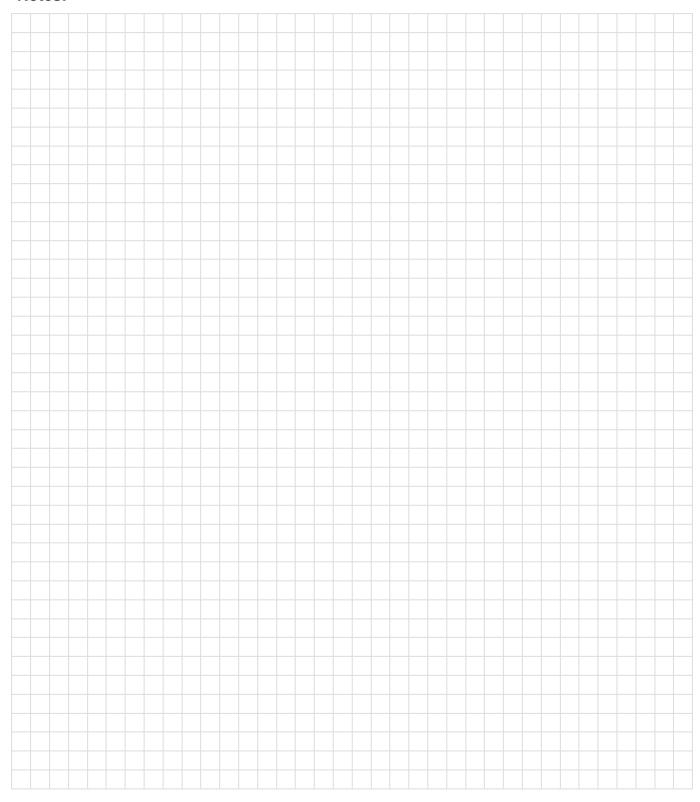
Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

PROTEGO® PV/EBR



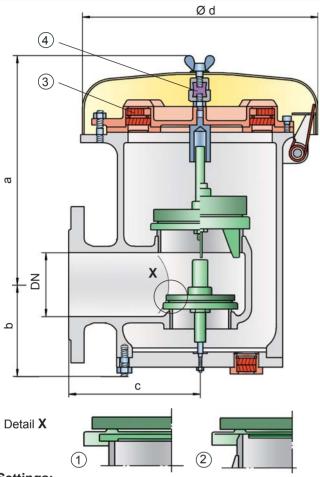


Pressure/Vacuum Relief Valve


Flow Capacity Charts

PROTEGO® PV/EBR

Notes:



Pressure/Vacuum Relief Valve

deflagration- and endurance burning-proof

PROTEGO® PV/EBR-E

Settings:

pressure: +2.0 mbar up to +210 mbar

+0.8 ln W.C. up to +84 ln W.C.

vacuum: -3.5 mbar up to -50 mbar

-1.4 ln W.C. up to -20 ln W.C.

Higher and lower settings upon request

Function and Description

The deflagration-proof and endurance burning-proof PV/EBR-E type PROTEGO® valve is a highly developed combined pressure/vacuum relief valve for high flow capacities with an integrated flame arrester that is specially used for applications handling ethanol. It is primarily used as a safety device for flame transmission proof outbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and vacuum, prevents the inbreathing of air and product losses almost up to the set pressure and also protects against atmospheric deflagration as well as endurance burning if stabilized burning occurs. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. The PROTEGO® PV/EBR-E valve is available for substances of explosion group IIB1 (MESG ≥ 0.85 mm) and provides specific protection against deflagration and endurance burning of alcohol/air mixtures (such as ethanol/air).

The valve functions proportional, so the set pressures should be selected in relation to the proportional behaviour (such as a 10%, 40%, or 100% overpressure from the set pressure to the relieving pressure at which the required flow performance is reached).

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank. If additional mixture continues to flow and stabilized burning occurs, the integrated flame arrester unit prevents flashback as a result from endurance burning. The valve is protected and also fulfils its function under this severe service condition. The spring loaded weather hood opens as soon as the fusible element (4) melts.

The valve can be used up to an operating temperature of +60°C / 140°F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- selecting set pressure close to relieving pressure results in product loss reduction
- more design flexibility through higher reseating pressures; vents reseat when conventional vent is still discharging costly product or nitrogen
- the valve disc is guided within the housing to protect against harsh weather conditions
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- can be used as protective system according to ATEX in areas subject to explosion hazards (94/9/EC)
- safe against deflagration and endurance burning of alcohol/ air mixtures from explosion group IIB1
- high flow capacity through large flame filter cross-section, results in low pressure drop
- FLAMEFILTER® provides protection against atmospheric deflagration and endurance burning
- FLAMEFILTER® integrated into valve saves space, weight and reduces cost
- FLAMEFILTER® protected from clogging caused by product vapours
- · flame transmission proof condensate drain
- · maintenance friendly design
- modular design enables individual FLAMEFILTER® and valve pallets to be replaced
- · special design with lifting gear can be purchased

Design Types and Specifications

Almost any combination of vacuum and pressure levels can be set for the valve. The valve discs are weight loaded. When the difference between the pressure and vacuum exceeds 150 mbar / 60.2 ln W.C., special valve discs are used.

There are two different designs:

Pressure/vacuum relief valve, basic design

PV/EBR-E- -

Pressure/vacuum relief valve with heating jacket (max. heating fluid temperature

PV/EBR-E- H

+85°C / 185°F)

Additional special devices available upon request

Table 1: Dime	Dimensions in mm / inches					
To select the nominal size (DN), please use the flow capacity charts on the following pages						
DN	80 / 3"	80 / 3"	100 / 4"	100 / 4"		
Set pressure	≤ +35 mbar ≤ +14 In W.C.	> +35 mbar > +14 ln W.C.	≤ +35 mbar ≤ +14 ln W.C.	> +35 mbar > +14 ln W.C.	Dimensions for Pressure/	
а	345 / 13.58	475 / 18.70	345 / 13.58	475 / 18.70	Vacuum Relief Valve with	
b	141 / 5.55	141 / 5.55	141 / 5.55	141 / 5.55	heating jacket upon request	
С	218 / 8.58	218 / 8.58	218 / 8.58	218 / 8.58		
d	353 / 13.90	353 / 13.90	353 / 13.90	353 / 13.90		

Table 2: Selection of explosion group					
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	Chesial approvals upon request		
≥ 0,85 mm	IIB1	_	Special approvals upon request		

Table 3: Material selection for housing				
Design	В	С		
Housing Heating jacket (PV/EBR-E-H)	Steel Steel	Stainless Steel Stainless Steel	Special materials upon request	
Valve seats	Stainless Steel	Stainless Steel		
Weather hood	Steel	Stainless Steel		

Table 4: Material combination of flame arrester unit					
Design	Α				
FLAMEFILTER® cage	Stainless Steel	Special materials upon request			
FLAMEFILTER®	Stainless Steel	Special materials upon request			
Spacer	Stainless Steel				

Table 5: Material selection for pressure valve pallet					
Design	Α	В	С	D	
Pressure range [mbar] [ln W.C.]	+2.0 up to +3.5 +0.8 up to +1.4		>+14 up to +210 >+5.6 up to +84		Special material as well as higher set pressure upon
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request
Sealing	FEP	FEP	Metal to Metal	PTFE	

KA / 7 / 0309 / GB

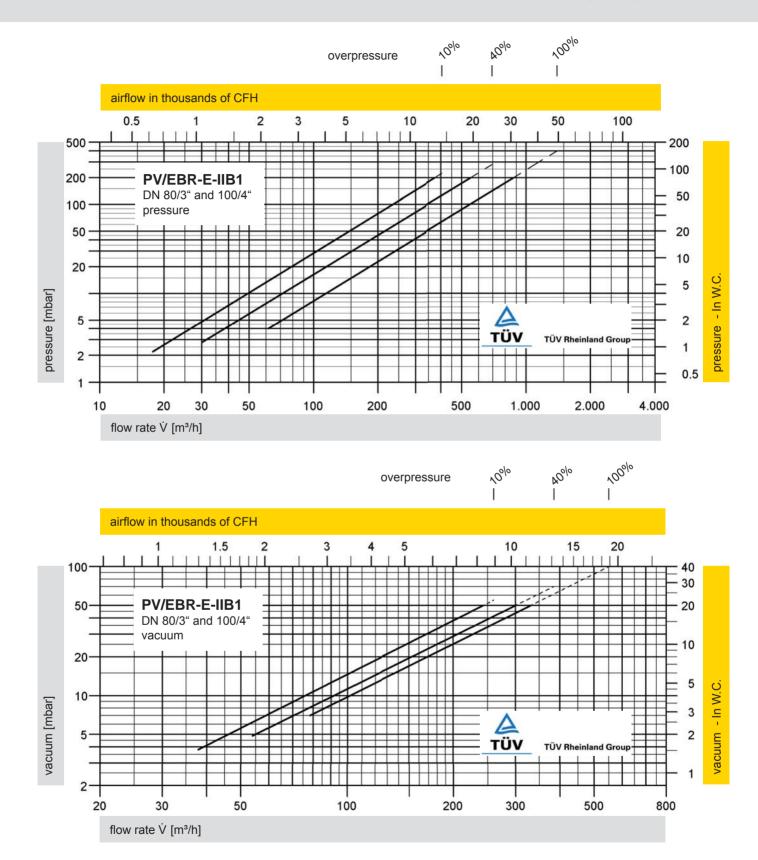
47

PROTEGO® PV/EBR-E

Table 6: Material selection for vacuum pallet					
Design	Α	В	С	D	
Vacuum range [mbar] [In W.C.]	-3.5 up to -5.0 -1.4 up to -2.0	<-5.0 up to -14 <-2.0 up to -5.6	<-14 up to -50 <-5.6 up to -20	<-14 up to -50 <-5.6 up to -20	Special material as well as higher set vacuum upon
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request
Sealing	FEP	FEP	Metal to Metal	PTFE	

Table 7: Flange connection type

EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request

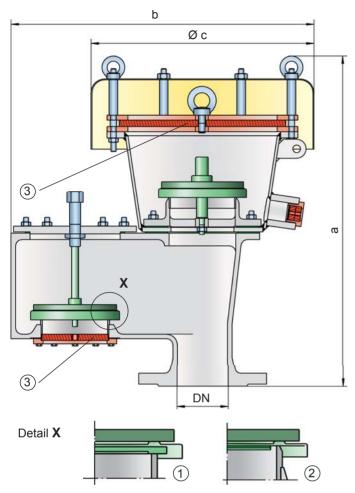


Order example

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

KA / 7 / 0309 / GB

PROTEGO® PV/EBR-E



Pressure/Vacuum Relief Valve atmospheric deflagration-proof

PROTEGO® VD/SV-AD and VD/SV-ADL

Settings:

pressure: +3.5 mbar up to +35 mbar

+1.4 in W.C. up to +14 in W.C. **vacuum:** -2.0 mbar up to -35 mbar

-0.8 in W.C. up to -14 in W.C.

Higher and lower settings upon request

Function and Description

The deflagration proof VD/SV-AD(L) type PROTEGO® valve is a highly developed combined pressure/vacuum relief valve for high flow capacities with an integrated flame arrester unit. It is primarily used as a safety device for flame-transmission-proof in- and outbreathing in tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and vacuum, preventing outbreathing of product vapour and inbreathing of air almost up to the set pressure and also protects against atmospheric deflagration. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. The deflagration-proof PROTEGO® VD/SV-AD(L) valve is available for substances from explosion groups IIA to IIB3 (NEC group D to C MESG ≥ 0.65 mm).

When the set pressure is reached, the valve starts to open and reaches full lift within 10% overpressure. This unique 10% technology enables a set pressure that is only 10% below the maximum allowable working pressure (MAWP) or maximum allowable working vacuum (MAWV) of the tank. After years of de-

velopment, this typical opening characteristic of a safety relief valve is now also available for the low pressure range.

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the in- and outbreathing is completed the valve reseats and provides a tight seal.

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission resulting from atmospheric deflagration into the tank. The vacuum side is also protected against atmospheric deflagration.

The valve can be used up to an operating temperature of $+60^{\circ}$ C / 140° F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- · requires only 10% overpressure to full lift
- through 10% technology set pressures and vacuum closer to MAWP and MAWV can be reached which results in product loss reduction compared to conventional 80% and 100% overpressure technology vents (compare API 2000)
- more design flexibility through higher reseating pressures; vents reseat when conventional vent is still discharging costly product or nitrogen
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- the valve disc is guided within the housing to protect against harsh weather conditions
- can be used as protective system according ATEX in areas subject to explosion hazards (94/9/EC)
- FLAMEFILTER® provides protection against atmospheric deflagration
- FLAMEFILTER® integrated into valve saves space, weight and reduces cost
- FLAMEFILTER® protected from clogging through product vapour
- FLAMEFILTER® has a low pressure drop
- · flame transmission proof condensate drain
- · maintenance friendly design
- modular design enables individual FLAMEFILTER® and the valve pallet to be replaced
- superior technology for API tanks with low MAWP and MAWV

Design Types and Specifications

Any combination of vacuum and pressure levels can be set for the valve

The valve discs are weight-loaded.

There are two different designs:

Pressure/vacuum relief valve with housing, standard design

VD/SV-AD

Pressure/vacuum relief valve with expanded housing

VD/SV-ADL

Additional special devices available upon request

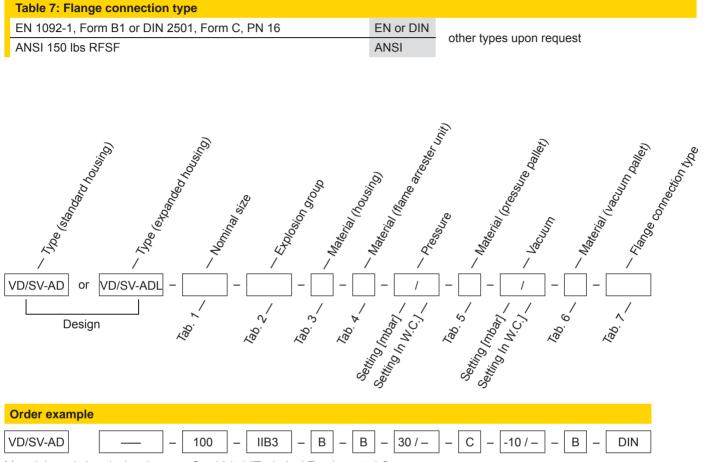
Table 1: Dime	Table 1: Dimensions Dimensions in mm / inches						
To select the nominal size (DN), please use the flow capacity charts on the following pages							
	VD/S	V-AD	VD/S'	V-ADL			
DN	80 / 3"	100 / 4"	100 / 4"	150 / 6"			
а	540 / 21.26	565 / 22.24	650 / 25.59	760 / 29.92			
b	475 / 18.70	575 / 22.64	700 / 27.56	855 / 33.66			
С	350 / 13.78	350 / 13.78	600 / 23.62	600 / 23.62			

Table 2: Selection of explosion group					
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	Chesial approvals upon request		
≥ 0,65 mm	IIB3	С	Special approvals upon request		

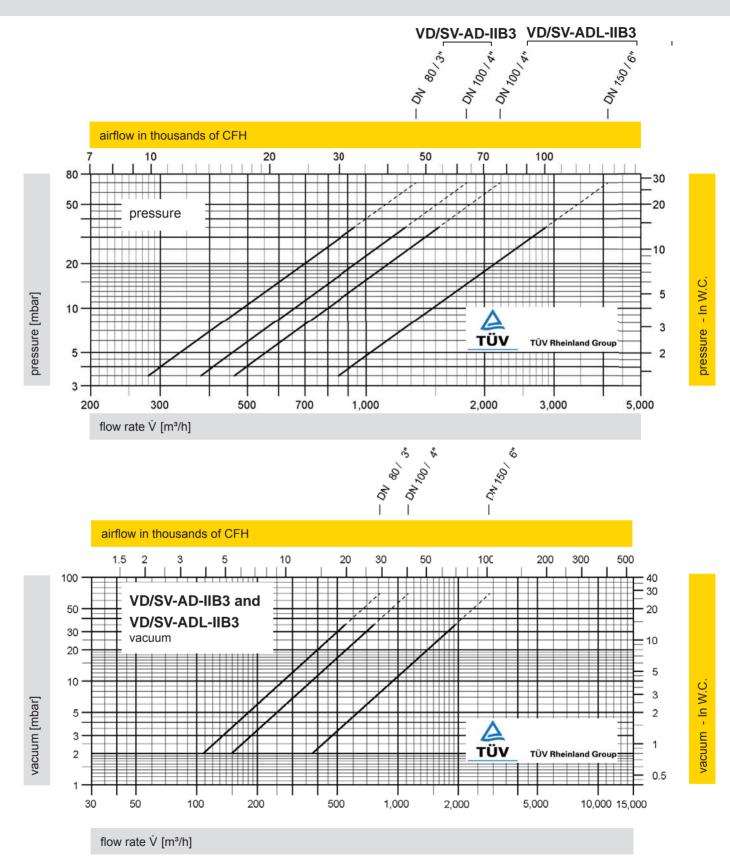
Table 3: Material sele	ction for housing	J	
Design	Α	В	
Housing	Steel	Stainless Steel	
Valve seats	Stainless Steel	Stainless Steel	Option: Housing with ECTFE-lining
Gasket	WS 3822	PTFE	Special materials upon request
Weather hood	Stainless Steel	Stainless Steel	
Flame arrester unit	A, B	В	

Table 4: Material com	binations of flam	e arrester units	
Design	Α	В	
FLAMEFILTER® cage	Steel	Stainless Steel	Special materials upon request
FLAMEFILTER®	Stainless Steel	Stainless Steel	

Table 5: Material selection for pressure valve pallet					
Design	Α	В	С	D	
Pressure range [mbar] [ln W.C.]	+3.5 up to +5.0 +1.4 up to +2.0	>+5.0 up to +14 >+2.0 up to +5.6		>+14 up to +35 >+5.6 up to +14	Special material as well as higher set pressure upon
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request
Sealing	FEP	FEP	Metal to Metal	PTFE	

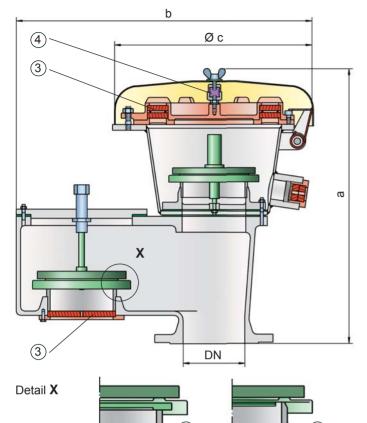

Table 6: Material selection for vacuum valve pallet					
Design	Α	В	С	D	Special material as well
Vacuum range [mbar] [In W.C.]	-2.0 up to -3.5 -0.8 up to -1.4	<-3.5 up to -14 <-1.4 up to -5.6	<-14 up to -35 <-5.6 up to -14	<-14 up to -35 <-5.6 up to -14	as higher set vacuum upon request
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	
Sealing	FEP	FEP	Metal to Metal	PTFE	

for safety and environment


Pressure/Vacuum Relief Valve atmospheric deflagration-proof

PROTEGO® VD/SV-AD and VD/SV-ADL

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"


PROTEGO® VD/AD and VD/SV-ADL

PROTEGO® VD/SV-HR

pressure: +3.5 mbar up to +35 mbar

+1.4 In W.C. up to +14 In W.C.

vacuum: -2.0 mbar up to -35 mbar

-0.8 In W.C. up to -14 In W.C.

Higher and lower settings upon request

Function and Description

Settings:

The deflagration-proof and endurance burning-proof VD/SV-HR type PROTEGO® valve is a highly developed combined pressure/ vacuum relief valve for high flow capacities with an integrated flame arrester. It is primarily used as a safety device for flame-transmission-proof in- and out-breathing in tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and vacuum, preventing outbreathing of product vapour and inbreathing of air almost up to the set pressure and also protects against atmospheric deflagration as well as endurance burning if stabilized burning occurs. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. The deflagration and endurance burning proof PROTEGO® VD/SV-HR device is available for substances from explosion groups IIA to IIB3 (NEC group D to C MESG ≥ 0.65 mm).

If the set pressure is reached for a valve approved for explosion Group IIA (NEC group D), the valve starts to open and reaches full lift within 10% overpressure. This unique 10% technology enables a set pressure that is only 10% below the maximum allowable working pressure (MAWP) of the tank. After years of development, this typical opening characteristic of a safety relief valve is now also available for the low pressure range. Valves approved for explosion group IIB3 (NEC group C) function proportionally, so the set pressures should be selected in relation to the proportional behaviour (such as a 10%, 40%, or 100%

overpressure from the set pressure to the relieving pressure at which the required flow performance is reached).

The tank pressure is maintained up to set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere . If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank. If additional mixture continues to flow and stabilized burning occurs, the integrated flame arrester unit prevents flashback as a result from endurance burning. The valve is protected and also fulfils its function under this severe service condition. The spring loaded weather hood opens as soon as the fusible element (4) melts.

The valve can be used up to an operating temperature of +60°C / 140°F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Type approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- requires only 10% overpressure to full lift for explosion group IIA (NEC group D) vapours
- through 10% technology higher set pressures can be used which results in product loss reduction compared to conventional 80% and 100% overpressure technology vents (compare API 2000)
- more design flexibility through higher reseating pressures; vents reseat when conventional vent is still discharging costly product or nitrogen
- the valve disc is guided within the housing to protect against harsh weather conditions
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- can be used as protective system according to ATEX in areas subject to explosion hazards (94/9/EC)
- safe against deflagration and endurance burning for explosion group IIA and IIB3 (NEC group D and C) vapours
- high flow capacity through large FLAMEFILTER® crosssection, results in low pressure drop
- FLAMEFILTER® provides protection against atmospheric deflagration and endurance burning
- FLAMEFILTER® integrated into valve saves space, weight and reduces cost
- FLAMEFILTER® protected from clogging caused by product vapours
- · flame transmission proof condensate drain
- · maintenance friendly design
- modular design enables individual FLAMEFILTERS® and valve pallets to be replaced

Design and Specifications

Any combination of vacuum and pressure levels can be set for the valve.

The valve discs are weight-loaded.

Pressure/vacuum relief valve, basic design

VD/SV-HR

Additional special devices available upon request

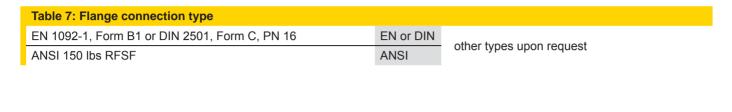
Table 1: Dimensions Dimensions in mm / inch					
To select the nominal size (DN), please use the flow capacity charts on the following pages					
DN	80 / 3"	100 / 4"			
а	500 / 19.69	543 / 21.38			
b	477 / 18.78	577 / 22.72			
С	353 / 13.90	353 / 13.90			

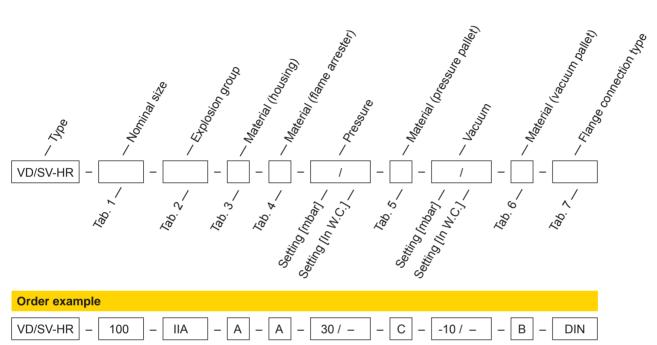
Table 2: Selection of explosion group						
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)				
> 0,90 mm	IIA	D	Special approvals upon request			
≥ 0,65 mm	IIB3	С				

Table 3: Material sele	ction for housing	J	
Design	Α	В	
Housing	Steel	Stainless Steel	
Valve seats	Stainless Steel	Stainless Steel	Option: Housing with ECTFE-lining
Gasket	WS 3822	PTFE	Special materials upon request
Weather hood	Steel	Stainless Steel	
Flame arrester unit	Α	Α	

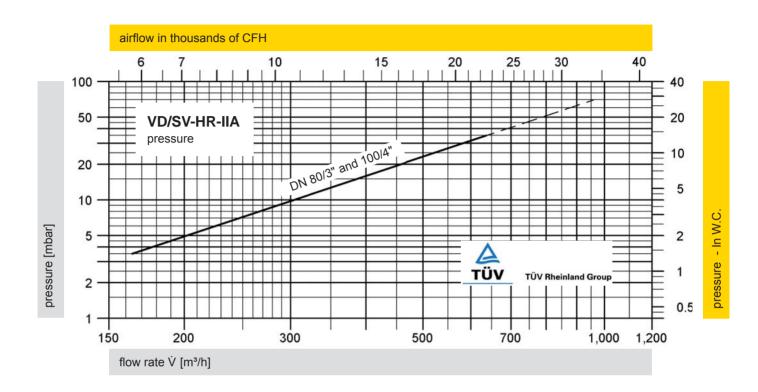
Table 4: Material combination of flame arrester unit Design A FLAMEFILTER® cage Stainless Steel FLAMEFILTER® Stainless Steel

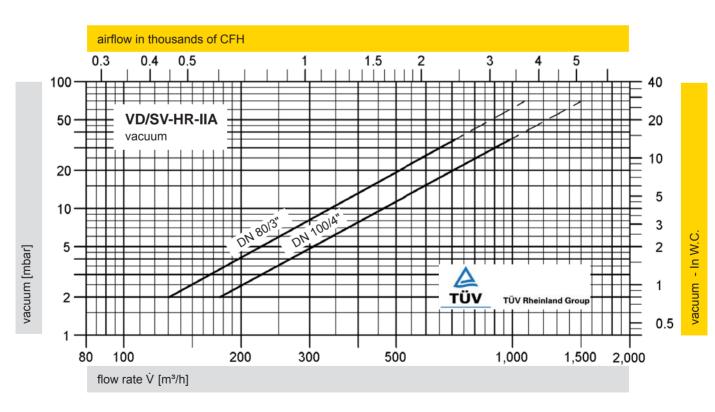
Table 5: Material selection for pressure valve pallet					
Design	Α	В	С	D	
Pressure range [mbar] [In W.C.]	+3.5 up to +5.0 +1.4 up to +2.0	>+5.0 up to +14 >+2.0 up to +5.6		>+14 up to +35 >+5.6 up to +14	Special material as well as higher set pressure upon
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request
Sealing	FEP	FEP	Metal to Metal	PTFE	


Table 6: Material selecti	Table 6: Material selection for vacuum valve pallet					
Design	Α	В	С	D	Special material as well	
Vacuum range [mbar] [ln W.C.]	-2.0 up to -3.5 -0.8 up to -1.4	<-3.5 up to -14 <-1.4 up to -5.6	<+14 up to +35 <-5.6 up to -14	<-14 up to -35 <-5.6 up to -14	as higher set vacuum upon request	
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel		
Sealing	FEP	FEP	Metal to Metal	PTFE	100	

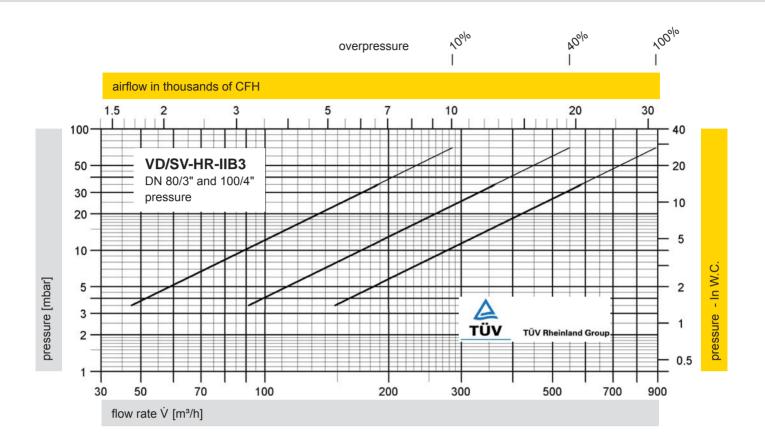

PROTEGO

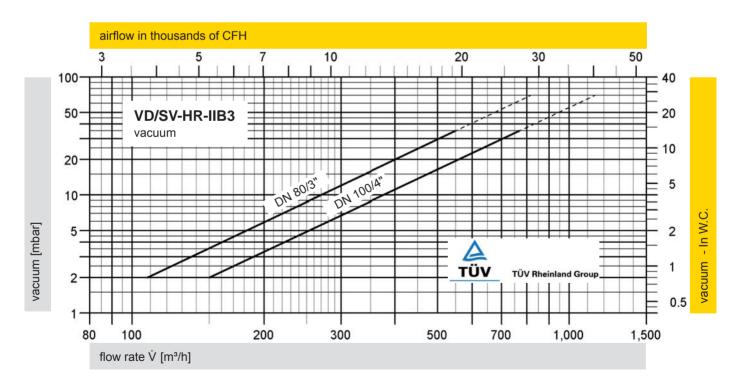
KA / 7 / 0309 / GB

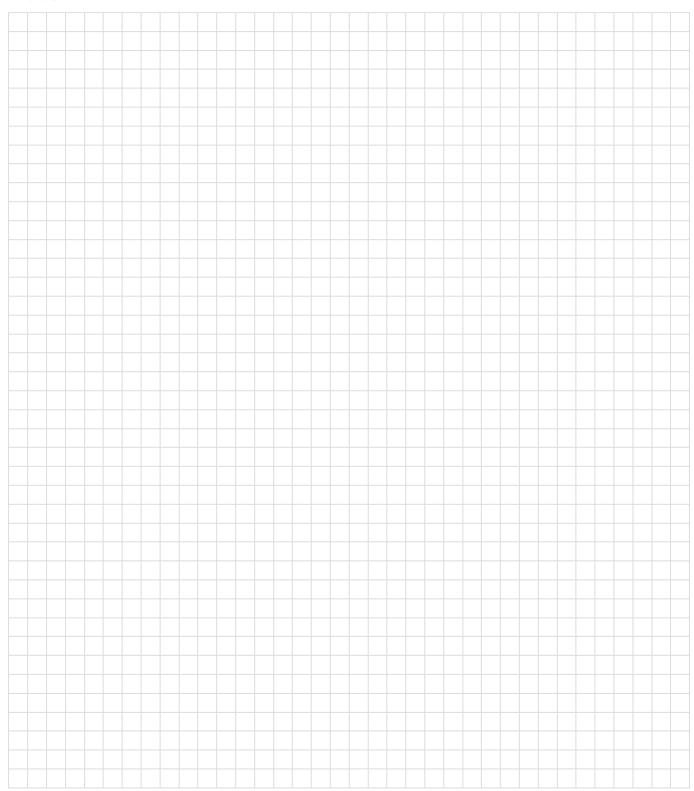



PROTEGO® VD/SV-HR

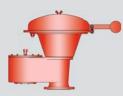
Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

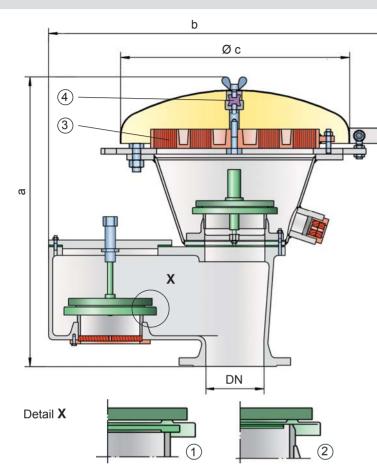





Pressure/Vacuum Relief Valve Flow Capacity Charts

PROTEGO® VD/SV-HR




Notes:

PROTEGO® VD/SV-HRL

Settings:

pressure: +3.5 mbar up to +35 mbar

+1.4 In W.C. up to +14 in W.C.

vacuum: -2.0 mbar up to -35 mbar

-0.8 In W.C. up to -14 In W.C.

Higher and lower settings upon request

Function and Description

The atmospheric deflagration and endurance burning proof VD/SV-HRL type PROTEGO® valve is a highly developed combined pressure/vacuum relief valve for high flow capacities with an integrated flame arrester. It is primarily used as a safety device for flame transmission proof in- and outbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and vacuum, prevents the inbreathing of air and product losses almost up to the set pressure and also protects against atmospheric deflagration and endurance burning if stabilized burning occurs. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. The PROTEGO® VD/SV-HRL device is available for substances of explosion group IIA (NEC group D MESG > 0.9 mm).

When the set pressure is reached, the valve starts to open and reaches full lift within 10% overpressure. This unique 10% technology enables a set pressure that is only 10% below the maximum allowable working pressure (MAWP) or maximum

allowable working vacuum (MAWV) of the tank. After years of development, this typical opening characteristic of a safety relief valve is now also available for the low pressure range.

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology.

This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank. If additional mixture continues to flow and stabilized burning occurs, the integrated flame arrester unit prevents flashback as a result from endurance burning. The valve is protected and also fulfils its function under this severe service condition. The spring loaded weather hood opens as soon as the fusible element (4) melts.

The valve can be used up to an operating temperature of +60°C / 140°F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- · requires only 10% overpressure to full lift
- through 10% technology higher set pressures can be used which results in product loss reduction compared to conventional 80% and 100% overpressure technology vents (compare API 2000)
- increased design flexibility through higher reseating pressures; vents reseat when conventional vent is still discharging costly product or nitrogen
- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- the valve disc is guided within the housing to protect against harsh weather conditions
- can be used as protective system according ATEX in areas subject to explosion hazards (94/9/EC)
- FLAMEFILTER® provides protection against atmospheric deflagration and endurance burning
- FLAMEFILTER® integrated into valve saves space, weight and reduces cost

- FLAMEFILTER® protected from clogging through product vapour
- FLAMEFILTER® has low pressure drop
- flame transmission proof condensate drain
- · maintenance friendly design
- superior technology for API tanks

Design and Specifications

Any combination of vacuum and pressure levels can be set for the valve. The valve discs are weight-loaded.

Pressure/vacuum relief valve, basic design

VD/SV-HRL

Additional special devices available upon request

Table 1: Dime	ensions		Dimensions in mm / inches
To select the r	nominal size (DN), please use	e the flow capacity charts on	the following pages
DN	100 / 4"	150 / 6"	
а	650 / 25.59	760 / 29.92	
b	1000 / 39.37	1155 / 45.47	
С	600 / 23.62	600 / 23.62	

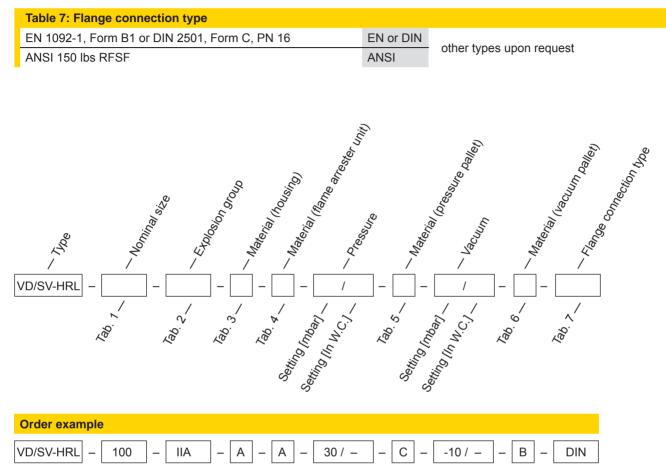
Table	Table 2: Selection of explosion group					
	MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	Chariel approvale upon request		
	> 0,90 mm	IIA	D	Special approvals upon request		

Table 3: Material sele	ction for housing	3	
Design	Α	В	
Housing	Steel	Stainless Steel	
Valve seats	Stainless Steel	Stainless Steel	Option: Housing with ECTFE-lining
Gasket	WS 3822	PTFE	Special materials upon request
Weather hood	Steel	Stainless Steel	
Flame arrester unit	A, B	В	

Table 4: Material combinations of flame arrester unit					
Design	Α	В			
FLAMEFILTER® cage	Steel	Stainless Steel	Special materials upon request		
FLAMEFILTER®	Stainless Steel	Stainless Steel			

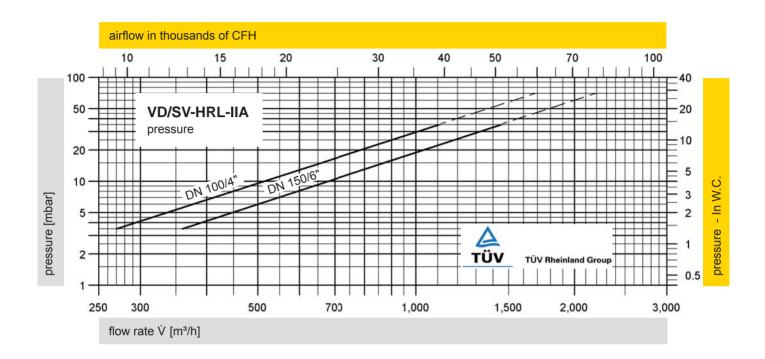
Table 5: Material selection for pressure valve pallet						
Design	Α	В	С	D		
Pressure range [mbar] [In W.C.]	+3.5 up to +5.0 +1.4 up to +2.0	>+5.0 up to +14 >+2.0 up to +5.6	>+14 up to +35 >+5.6 up to +14	>+14 up to +35 >+5.6 up to +14	Special material as well as higher set pressure upon	
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request	
Sealing	FEP	FEP	Metal to Metal	PTFE		

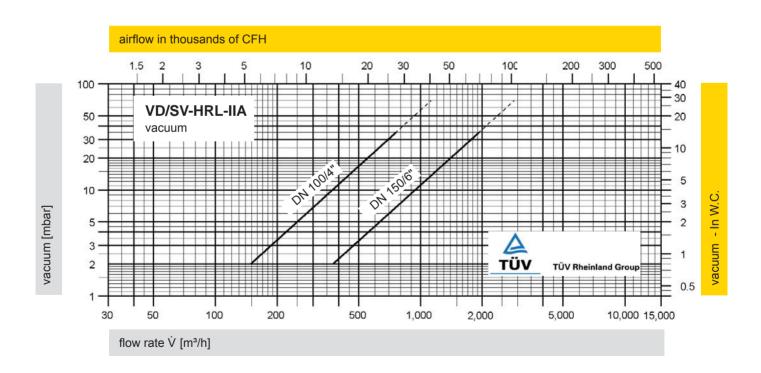
Table 6: Material selection for vacuum valve pallet							
Design	Α	В	С	D			
Vacuum range [mbar] [In W.C.]	-2.0 up to -3.5 -0.8 up to -1.4	<-3.5 up to -14 <-1.4 up to -5.6	<+14 up to +35 <-5.6 up to -14	<-14 up to -35 <-5.6 up to -14	Special material as well as higher set vacuum upon request		
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	request		
Sealing	FEP	FEP	Metal to Metal	PTFE	4		


PROTEGO

for safety and environment

KA / 7 / 0309 / GB

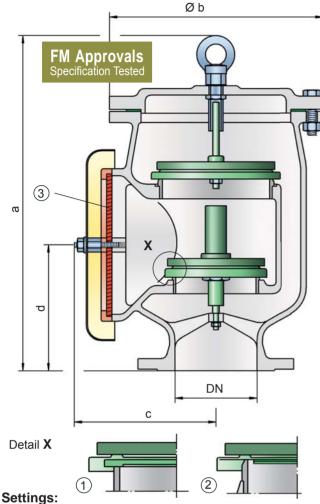

PROTEGO® VD/SV-HRL



Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

62

PROTEGO® VD/SV-HRL



Pressure/Vacuum Relief Valve atmospheric deflagration-proof

PROTEGO® VD/TS

pressure: +3.5 mbar up to +50 mbar

+1.4 In W.C. up to +20 In W.C.

vacuum: -2.0 mbar up to -25 mbar

-0.8 In W.C. up to -10 In W.C.

Higher and lower settings upon request

Function and Description

The atmospheric deflagration-proof VD/TS type PROTEGO® valve is a highly developed combined pressure/vacuum relief valve for high flow capacities with an integrated flame arrester unit. It is primarily used as a safety device for flame transmission proof in- and outbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and vacuum, prevents the inbreathing of air and product losses almost up to the set pressure and also protects against atmospheric deflagration. The PROTEGO® flame arrester unit is designed to achieve minimum pressure drop with maximum safety. The PROTEGO® VD/TS device is available for substances from explosion groups IIA to IIB3 (NEC group D to C MESG ≥ 0.65 mm).

When the set pressure is reached, the valve starts to open and reaches full lift within 10% overpressure. This unique 10% technology enables a set pressure that is only 10% below the maximum allowable working pressure (MAWP) or maximum allowable working vacuum (MAWV) of the tank. After years of development, this typical opening characteristic of a safety relief valve is now also available for the low pressure range.

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is ensured by the valve seats made of high quality stainless steel and with individually lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. If this mixture ignites, the integrated PROTEGO® flame arrester unit (3) prevents flame transmission into the tank.

The standard design is tested at an operating temperature up to +60°C / 140°F and meets the requirements of European tank design standard EN 14015 - Appendix L and API 2000. In addition numerous versions for higher operating temperature are available.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- · requires only 10% overpressure to full lift
- · extreme tightness and hence least possible product losses and reduced environmental pollution
- through 10% technology higher set pressures can be used which results in product loss reduction compared to conventional 80% and 100% overpressure technology vents (compare API 2000)
- · the valve disc is guided within the housing to protect against harsh weather conditions
- · can be used as protective system according ATEX in areas subject to explosion hazards (94/9/EC)
- FLAMEFILTER® provides protection against atmospheric deflagration
- · FLAMEFILTER® integrated into valve saves space and reduces cost
- FLAMEFILTER® protected from clogging through product vapour
- PROTEGO® flame arrester unit has low pressure drop
- · optimized flow performance
- · maintenance friendly design
- · sturdy housing design
- · superior technology for API tanks

Design and Specifications

Any combination of vacuum and pressure levels can be set for the valve. The valve discs are weight loaded.

Pressure/vacuum relief valve, basic design VD/TS-Additional special devices available upon request

Table 1: Dimensions Dimensions in mm / inc						n mm / inches		
To selec	To select the nominal size (DN), please use the flow capacity charts on the following pages							
DN	50 / 2"	80 / 3"	100 / 4"	125 / 5"	150 / 6"	200 / 8"	250 / 10"	300 / 12"
а	340 / 13.39	430 / 16.93	480 / 18.90	610 / 24.02	610 / 24.02	705 / 27.76	765 / 30.12	930 / 36.61
b	210 / 8.27	280 / 11.02	310 / 12.20	390 / 15.35	390 / 15.35	445 / 17.52	505 / 19.88	560 / 22.05
С	152 / 5.98	174 / 6.85	207 / 8.15	267 / 10.51	267 / 10.51	302/ 11.89	372 / 14.65	460 / 18.11
d	125 / 4.92	150 / 5.91	180 / 7.09	230 / 9.06	230 / 9.06	270 / 10.63	310 / 12.20	445 / 17.52

Table 2: Selection of explosion group						
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	Chariel approvals upon request			
≥ 0,65 mm	IIB3	С	Special approvals upon request			

Table 3: Selection of max. operating temperature						
≤ 60°C / 140°F	≤ 100°C / 212°F	≤ 150°C / 302°F	≤ 180°C / 356°F	≤ 200°C / 392°F	≤ 250°C / 482°F	*upop roguost
Standard (std)	X0 *	X1 *	X2 *	X3 *	X4 *	*upon request
Table 4: Materia	I selection for hou	using				
Design		Α	В	С	D	E
Housing		Aluminium	Ductile Iron	Steel	Stainless Steel	Hastelloy
Valve seats		Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Hastelloy
Gasket		WS 3822	WS 3822	WS 3822	PTFE	PTFE
Weather hood		Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Hastelloy
Flame arrester ur	nit	Α	Α	Α	Α	В

Special materials upon request

A-F

A-E

Pressure valve pallet

Vacuum valve pallet

Table 5: Material combination of flame arrester unit					
Design	Α	С			
FLAMEFILTER® cage	Stainless Steel	Hastelloy	Special materials upon request		
FLAMEFILTER®	Stainless Steel	Hastelloy			

A-F

A-E

A-F

A-E

Table 6: Material selection for pressure pallet						
Design	Α	В	С	D	Е	
Pressure range [mbar] [In W.C.]	+3.5 up to +5,0 +1.4 up to +2.0	>+5.0 up to +14 >+2.0 up to +5.6	>+14 up to +35 >+5.6 up to +14	>+35 up to +50 >+14 up to +20	>+14 up to +35 >+5.6 up to +14	
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	
Sealing	FEP	FEP	Metal to Metal	Metal to Metal	PTFE	
Weight	Stainless Steel	Stainless Steel	Stainless Steel	Lead	Stainless Steel	
Design	F	G	Н	1		
Pressure range [mbar] [In W.C.]	>+35 up to +50 >+14 up to +20	+3.5 up to +5,0 +1.4 up to +2.0	>+5.0 up to +14 >+2.0 up to +5.6	>+14 up to +35 >+5.6 up to +14	-	
Valve pallet	Stainless Steel	Titanium	Hastelloy	Hastelloy	_	
Sealing	PTFE	FEP	FEP	Metal to Metal		
Weight	Lead	Hastelloy	Hastelloy	Hastelloy		

Special material as well as higher set pressure upon request

PROTEGO

G-I

F-G

A-F

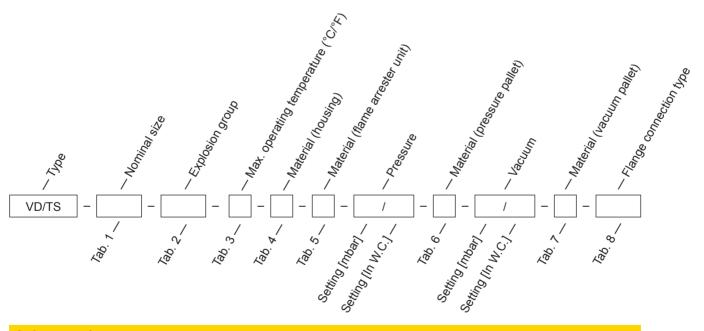
A-E

Pressure/Vacuum Relief Valve atmospheric deflagration-proof

PROTEGO® VD/TS

Table 7: Material selection for vacuum pallet						
Design	Α	В	С	E	F	
Vacuum range [mbar] [In W.C.]	-2.0 up to -3.5 -0.8 up to -1.4	<-3.5 up to -14 <-1.4 up to -5.6	<-14 up to -25 <-5.6 up to -10	<-14 up to -25 <-5.6 up to -10	-2.0 up to -3.5 -0.8 up to -1.4	
Valve pallet	Aluminium	Stainless Steel	Stainless Steel	Stainless Steel	Titanium	
Sealing	FEP	FEP	Metal to Metal	PTFE	FEP	
Weight	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Hastelloy	
Design	G	Н				
Vacuum range [mbar] [In W.C.]	<-3.5 up to -14 <-1.4 up to -5.6	<-14 up to -25 <-5.6 up to -10	Special material as well as higher set vacuum upon			
Valve pallet	Hastelloy	Hastelloy	request		a rada apon	
Sealing	FEP	Metal to Metal				
Weight	Hastelloy	Hastelloy				

Table 8: Flange connection type

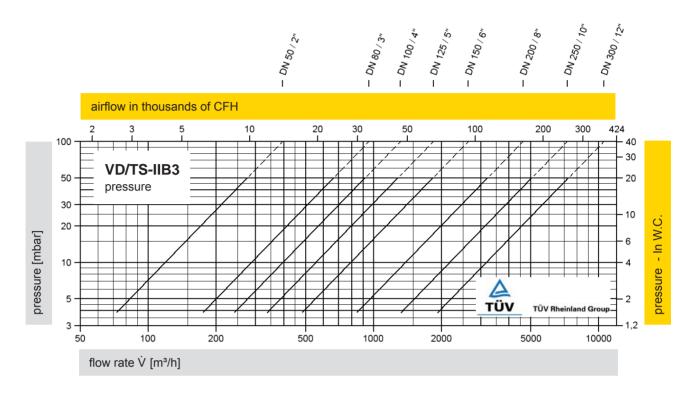

EN 1092-1, Form B1 or DIN 2501, Form C, PN 16; from DN 200 PN 10

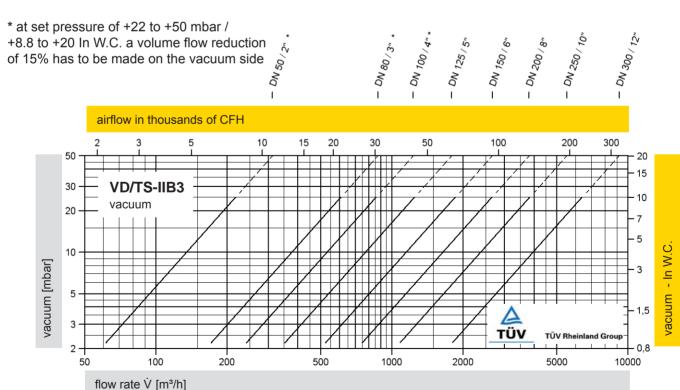
EN or DIN

ANSI 150 lbs RFSF

ANSI

other types upon request

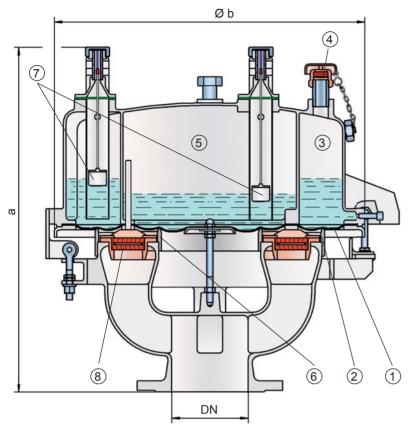



Order example

VD/TS - 100 - IIB3 - (std) - A - A - 30 / - C - -10 / - B - DIN

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

PROTEGO® VD/TS



PROTEGO® UB/SF

Settings:

pressure: DN 80 +3.5 mbar up to +50 mbar

+1.4 In W.C. up to +20 In W.C.

DN 100 +3.5 mbar up to +45 mbar

+1.4 ln W.C. up to +18 ln W.C.

DN 150 +3.5 mbar up to +40 mbar

+1.4 In W.C. up to +16 In W.C.

Higher pressure settings up to +140 mbar (56.2 In W.C.) in special design with additional liquid reservoir as well as lower pressure settings upon request.

vacuum: -3.5 mbar up to -35 mbar

−1.4 ln W.C. up to −14 ln W.C.

Higher and lower vacuum settings upon request

Function and Description

The deflagration- and endurance burning-proof UB/SF type PROTEGO® diaphragm valve is a state of the art pressure- and vacuum-relief valve combining the function of a dynamic and static flame arrester. Worldwide this design is unique. It is primarily used as a safety device for flame transmission proof in- and outbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure and vacuum, prevents the inbreathing of air and product losses almost up to the set pressure and protects against atmospheric deflagration and endurance burning if stabilized burning occurs. The PROTEGO® UB/SF diaphragm valve has proven its performance over many years in a great variety of severe applications in the petrochemical and chemical

industry. Worldwide it is the only vent which functions in services such as styrene and acrylics. The set pressure is adjusted with a freeze resistant water glycol mixture, which assures safe operation under extreme cold weather conditions. The PROTEGO® UB/SF valve is available for substances of explosion group IIB3 (NEC group C MESG \geq 0.65 mm).

When the pressure in the tank reaches the set pressure, the diaphragm (1) on the outer valve seat ring (2) is lifted and vapours vent to the environment. The set pressure is adjusted by the liquid (glycol water mixture) column height, which is filled into the outer ring chamber (3). The overpressure chamber is equipped with an opening (4) to keep the pressure in balance with the ambient pressure. The opening is equipped with a FLAMEFILTER® to avoid flame transmission into the overpressure chamber. If a vacuum builds up in the tank, it is transmitted through pressure balancing tubes into the vacuum chamber (5) (inner chamber). If the set vacuum, which depends on the liquid column height in the vacuum chamber, is reached the atmospheric pressure lifts the diaphragm off the inner valve seat ring (6). Ambient air can now flow into the tank. The liquid column heights, which affect the set pressures and vacuum, can be checked by floating level indicators (7).

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our highly developed manufacturing technology. This is achieved because the liquid loaded diaphragm presses tightly around the special designed valve seat surface area, even when the operating pressure increases. This is extremely important to reduce leakage to an absolute minimum. After the excess pressure or vacuum is discharged, the valve reseats and provides a tight seal.

If the tank pressure exceeds the adjusted set pressure, explosive gas/product-vapour air mixtures exit. The speed at which these mixtures exit the annular gap between the diaphragm and the outer valve seat ring while overcoming the set pressure is much faster than the flame speed. If this mixture ignites, flashback into the tank is prevented. If the mixture flow continues, the dynamic flame arresting feature prevents flashback ignition even in the case of endurance burning. Even at relatively low flow rates, which occur during thermal outbreathing, the gap formed by the volumetric flow is so narrow that flames are extinguished in the gap and flashback is prevented. At very low pressure settings the explosion pressures resulting from an atmospheric deflagration may be strong enough to lift the diaphragm off the valve seat rings so that flashback could result. The ignition into the tank can be prevented by installing the PROTEGO® flame arrester unit (8). This flame arrester unit provides additional protection against atmospheric deflagration during regular maintenance and inspection.

The valve can be used up to an operating temperature of $+60^{\circ}$ C / 140° F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- set pressure close to opening pressure enables optimum pressure maintenance in the system
- · high flow capacity
- can be used as a protective system according to ATEX 94/9/EC in areas subject to an explosion hazard
- protection against atmospheric deflagrations and endurance burning for products up to explosion group IIB3 (NEC group C MESG ≥ 0.65 mm)
- FLAMEFILTER® integrated into valve saves space, weight and reduces cost
- minimum pressure drop of the FLAMEFILTER®
- flame-transmission-proof pressure and vacuum chambers
- · freeze protection at sub-zero conditions
- · self draining function for condensate
- · liquid column height is monitored by level indicators

- · easy maintenance through hinged vent cap
- modular design enables individual FLAMEFILTERS® and valve diaphragm to be replaced
- particularly suitable for problematic products such as styrene, acrylics, etc.

Design Types and Specifications

Almost any combination of vacuum and pressure settings can be utilized for the valve. The diaphragm is pressurized by liquid. Higher pressures can be achieved upon request with a special liquid reservoir. When there is a substantial difference between the pressure and vacuum, special designs with weight-loaded vacuum discs are used.

There are two different designs:

Pressure/vacuum diaphragm valve, basic design

UB/SF - -

Pressure/vacuum diaphragm valve with heating **UB/SF** - H coil

(max. heating fluid temperature +85°C / 185°F)

In addition to the standard design, a series of specially developed designs, which are particularly suitable for operating conditions to which these products are subjected, can be provided upon request (for example, for acrylics or styrene storage tanks, etc.).

Table 1: I	Dimensions	Dimensions in mm / inches				
To select the nominal size (DN), please use the flow capacity charts on the following pages						
DN	pressure	80 / 3"	100 / 4"	150 / 6"		
а	up to +28 mbar / +11.2 ln W.C.	615 / 24.21	645 / 25.39	680 / 26.77		
а	> +28 mbar / +11.2 ln W.C.	765 / 30.12	795 / 31.30	830 / 32.68		
b		410 / 16.14	485 / 19.09	590 / 23.23		

Pressure settings > +50 mbar / +20 ln W.C. (DN 80/3"), > +45 mbar / +18 ln W.C. (DN 100/4"), > +40 mbar / +16 ln W.C. (DN150/6") with additional liquid reservoir - dimensions upon request

Dimensions for pressure/vacuum diaphragm valves with heating coil upon request

Table 2: Selection of explosion group						
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	Checial approvale upon request			
≥ 0,65 mm	IIB3	С	- Special approvals upon request			

PROTEGO

for safety and environment

KA / 7 / 0309 / GB

PROTEGO® UB/SF

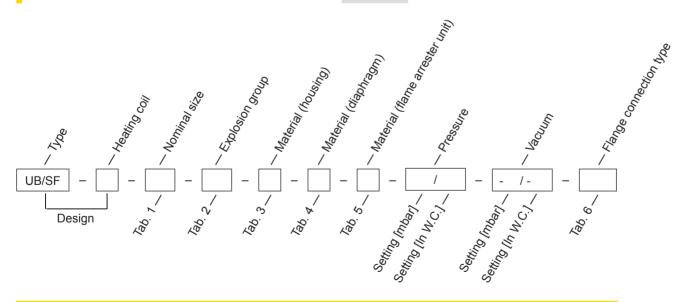
Table 3: Material selection for housing					
Design	В	С	D		
Housing	Cast Iron	Steel	Stainless Steel		
Valve top	Stainless Steel	Stainless Steel	Stainless Steel		
Heating coil (UB/SF-H)	Stainless Steel	Stainless Steel	Stainless Steel		
Valve seats	Stainless Steel	Stainless Steel	Stainless Steel		
Gasket	FPM	FPM	PTFE		
Diaphragm	A, B	A, B	A, B		
Flame arrester unit	Α	С	С		

Option: Housing with ECTFE-lining Special materials upon request

Table 4: Materia	selection for	diaphragm
------------------	---------------	-----------

Design	Α	В	Specia
Diaphragm	FPM	FEP	Speci

Special materials upon request

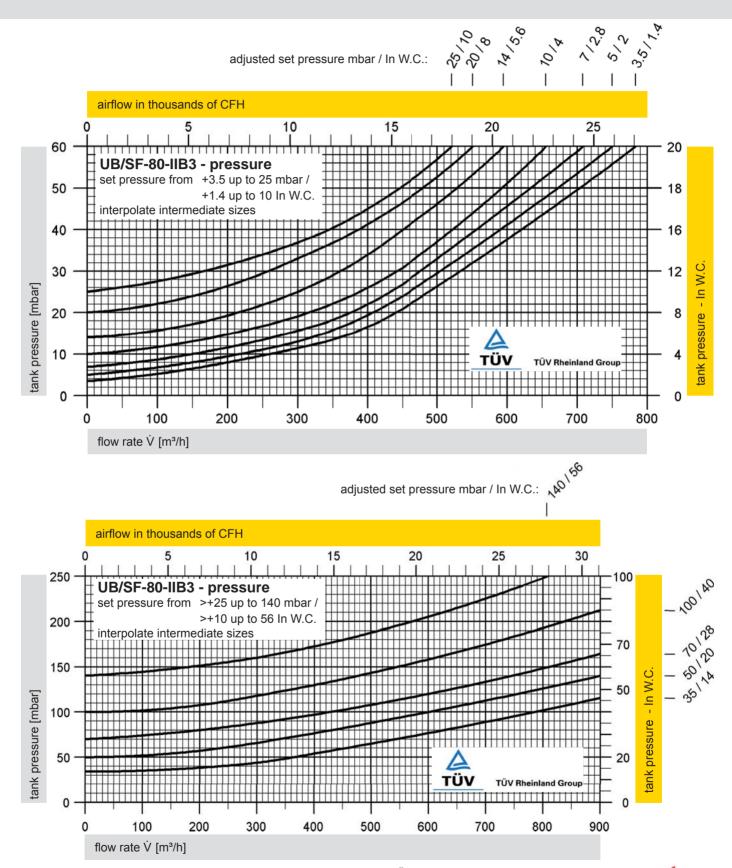

Table 5: Material combinations of flame arrester unit

Design	Α	С		
FLAMEFILTER® cage	Cast Iron	Stainless Steel		
FLAMEFILTER®	Stainless Steel	Stainless Steel		
Spacer	Stainless Steel	Stainless Steel		

Special materials upon request

Table 6: Flange connection type

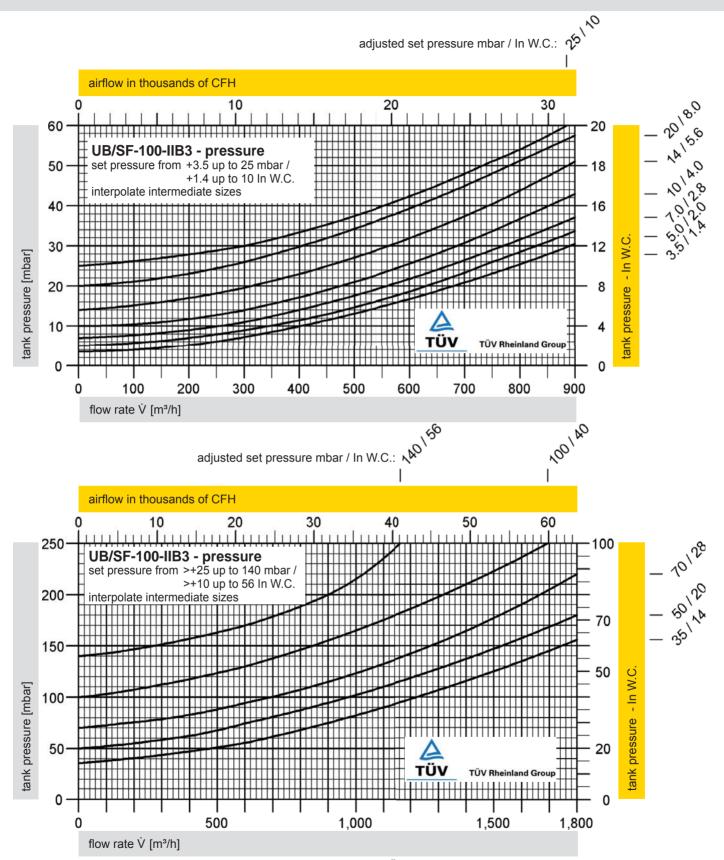
EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	

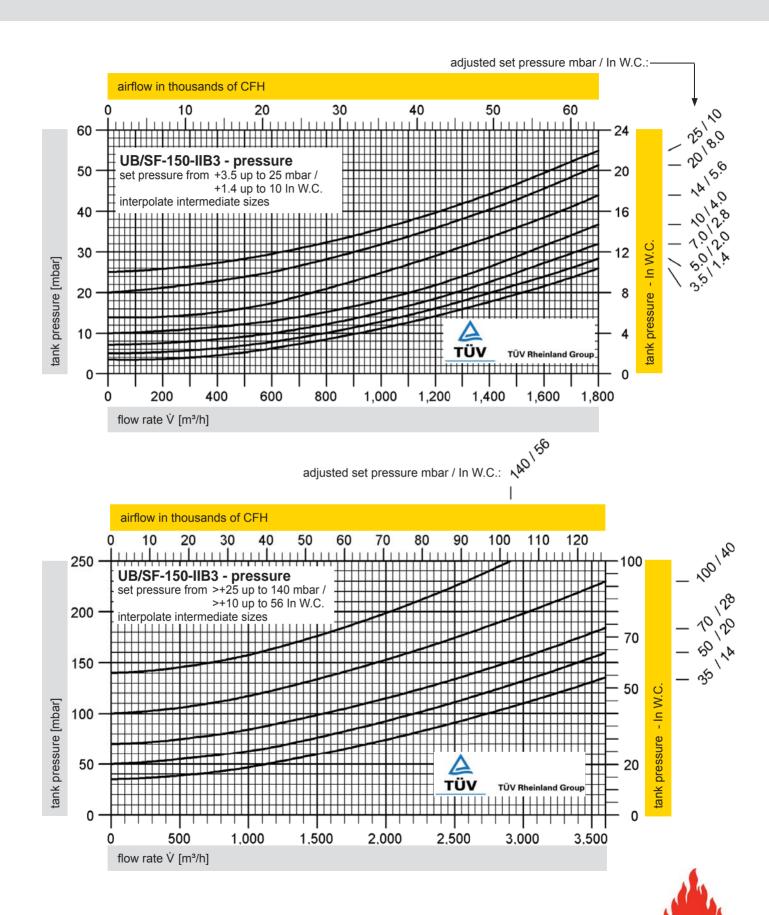

Order example

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

KA / 7 / 0309 / GB

PROTEGO® UB/SF-80

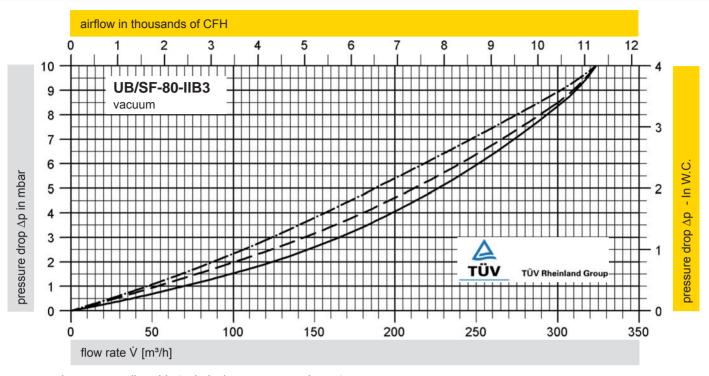



Pressure/Vacuum Diaphragm Valve

Flow Capacity Charts - Pressure

PROTEGO® UB/SF-100

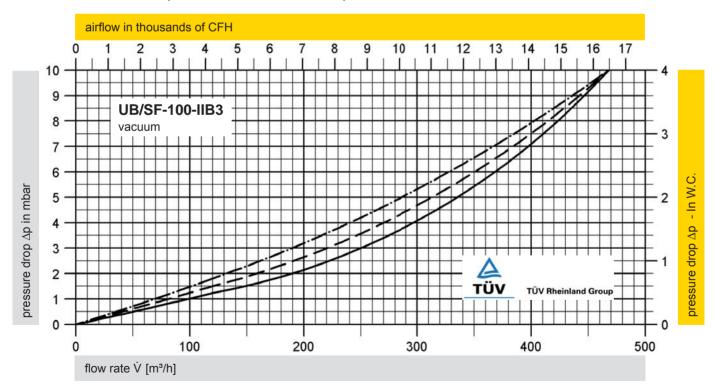
PROTEGO® UB/SF-150



Pressure/Vacuum Diaphragm Valve

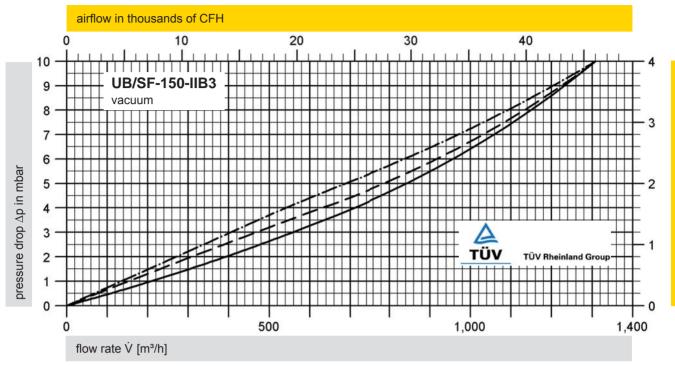
Flow Capacity Charts - Vacuum

PROTEGO® UB/SF-80 and 100


pressure drop = max. allowable tank design vacuum - valve set vacuum

adjusted set vacuum:

≤ -5 mbar / ≤ -2 In W.C.


> -5 mbar up to ≤ -7 mbar / > -2 In W.C. up to ≤ -2.8 In W.C.

— - — > -7 mbar up to ≤ -15 mbar / > -2.8 ln W.C. up to ≤ -6 In W.C.

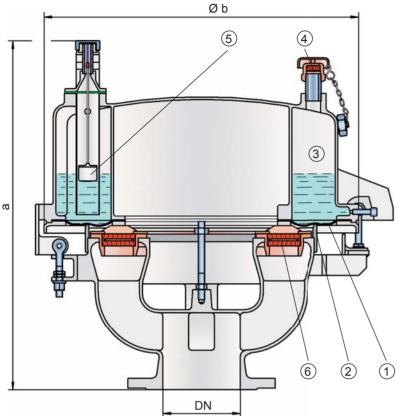
PROTEGO® UB/SF-150

pressure drop Δp - In W.C.

pressure drop = max. allowable tank design vacuum - valve set vacuum

adjusted set vacuum:

≤ -5 mbar / ≤ -2 In W.C.


- > -5 mbar up to ≤ -7 mbar / > -2 In W.C. up to ≤ -2.8 In W.C.

— • — > -7 mbar up to \leq -15 mbar / > -2.8 ln W.C. up to \leq -6 ln W.C.

Pressure Diaphragm Valve deflagration- and endurance burning-proof

PROTEGO® UB/DF

Pressure Settings:

DN 80 +3.5 mbar up to +50 mbar +1.4 ln W.C. up to +20 ln W.C. DN 100 +3.5 mbar up to +45 mbar +1.4 ln W.C. up to +18 ln W.C. DN 150 +3.5 mbar up to +40 mbar +1.4 ln W.C. up to +16 ln W.C.

Higher pressure settings up to +140 mbar (56.2 ln W.C.) in special design with additional liquid reservoir as well as lower pressure settings upon request.

Function and Description

The deflagration- and endurance burning-proof UB/DF type PROTEGO® diaphragm valve is a state-of-the-art pressurerelief valve combining the function of a dynamic and static flame arrester. Worldwide this design is unique. It is primarily used as a safety device for flame transmission proof out breathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against excess pressure prevents the inbreathing of air and product losses almost up to the set pressure and protects against atmospheric deflagration and endurance burning if stabilized burning occurs. The PROTEGO® UB/DF diaphragm valve has proven its performance over many years in a great variety of severe applications in the petrochemical and chemical industry. The set pressure is adjusted with a freeze resistant water glycol mixture, which assures safe operation under extreme cold weather conditions. The PROTEGO® UB/DF valve is available for substances of explosion group IIB3 (NEC group C MESG ≥ 0.65 mm).

When the pressure in the tank reaches the set pressure, the diaphragm (1) on the outer valve seat ring (2) is lifted and vapors vent to the environment. The set pressure is adjusted by the liquid (glycol water mixture) column height, which is filled into the outer ring chamber (3). The overpressure chamber is equipped with an opening (4) to keep the pressure in balance with the ambient pressure. The opening is equipped with a FLAMEFILTER® to avoid flame transmission into the overpressure chamber. Ambient air can now flow into the tank. The liquid column height which affect the set pressures is checked by a floating level indicator (5).

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our highly developed manufacturing technology. This is achieved because the liquid loaded diaphragm presses tightly around the special designed valve seat surface area, even when the operating pressure increases. This is extremely important to reduce leakage to an absolute minimum. After the excess pressure is discharged, the valve reseats and provides a tight seal.

If the tank pressure exceeds the adjusted set pres-

sure, explosive gas/product-vapour air mixtures exit. The speed at which these mixtures exit the annular gap between the diaphragm and the outer valve seat ring while overcoming the set pressure is much faster than the flame speed. If this mixture ignites, flashback into the tank is prevented. If the mixture flow continues, the dynamic flame arresting feature prevents flashback ignition even in the case of endurance burning. Even at relatively low flow rates, which occur during thermal outbreathing, the gap formed by the volumetric flow is so narrow that flames are extinguished in the gap and flashback is prevented. At very low pressure settings the explosion pressures resulting from an atmospheric deflagration may be strong enough to lift the diaphragm off the valve seat rings so that flashback could result. The ignition into the tank can be prevented by installing the PROTEGO® flame arrester unit (8). This flame arrester unit provides additional protection against atmospheric deflagration during regular maintenance and inspection.

The valve can be used up to an operating temperature of $+60^{\circ}$ C / 140° F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

76 KA / 7 / 0309 / GB

Special Features and Advantages

- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- set pressure close to opening pressure enables optimum pressure maintenance in the system
- · high flow capacity
- can be used as a protective system according to ATEX 94/9/EC in areas subject to an explosion hazard
- protection against atmospheric deflagrations and endurance burning for products up to explosion group IIB3 (NEC group C ≥ 0.65 mm MESG)
- FLAMEFILTER® integrated into valve saves space, weight and reduces cost
- minimum pressure drop of the FLAMEFILTER®
- · flame-transmission-proof pressure and vacuum chambers
- · freeze protection at sub-zero conditions
- · self draining function for condensate
- · liquid column height is monitored by level indicators
- · easy maintenance through hinged vent cap
- modular design enables individual FLAMEFILTER® and valve diaphragm to be replaced
- particularly suitable for problematic products such as styrene, acrylics, etc.

Design Types and Specifications

The diaphragm is pressurized by liquid. Higher pressures can be achieved upon request with a special liquid reservoir.

There are two different designs:

Pressure diaphragm valve, basic design

UB/DF - -

Pressure diaphragm valve with heating coil

UB/DF - H

(max. heating fluid temperature +85°C / 185°F)

In addition to the standard design, a series of specially developed designs, which are particularly suitable for the operating conditions to which these products are subjected, can be provided upon request (for example, for acrylics or styrene storage tanks, etc.).

Table 1: I	Dimensions	Dimensions in mm / inches						
To select	To select the nominal size (DN), please use the flow capacity charts on the following pages							
DN	pressure	80 / 3"	100 / 4"	150 / 6"				
а	up to +28 mbar / +11.2 ln W.C.	615 / 24.21	645 / 25.39	680 / 26.77				
а	> +28 mbar / +11.2 ln W.C.	765 / 30.12	795 / 31.30	830 / 32.68				
b		410 / 16.14	485 / 19.09	590 / 23.23				

Pressure settings > +50 mbar / +20 ln W.C. (DN 80/3"), > +45 mbar / +18 ln W.C. (DN 100/4"), > +40 mbar / +16 ln W.C. (DN150/6") with additional liquid reservoir - dimensions upon request

Dimensions for pressure diaphragm valves with heating coil upon request

Table 2: Selection of explosion group						
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	Chesial approvals upon request			
≥ 0,65 mm	IIB3	С	Special approvals upon request			

KA / 7 / 0309 / GB

Diaphragm

Pressure Diaphragm Valve deflagration- and endurance burning-proof

PROTEGO® UB/DF

Table 3: Material selection for housing					
Design	В	С	D		
Housing	Cast Iron	Steel	Stainless Steel		
Valve top	Stainless Steel	Stainless Steel	Stainless Steel		
Heating coil (UB/DF-H)	Stainless Steel	Stainless Steel	Stainless Steel		
Valve seat	Stainless Steel	Stainless Steel	Stainless Steel		
Gasket	FPM	FPM	PTFE		
Diaphragm	A, B	A, B	A, B		
Flame arrester unit	Α	С	С		

FPM

Option: Housing with ECTFE-lining Special materials upon request

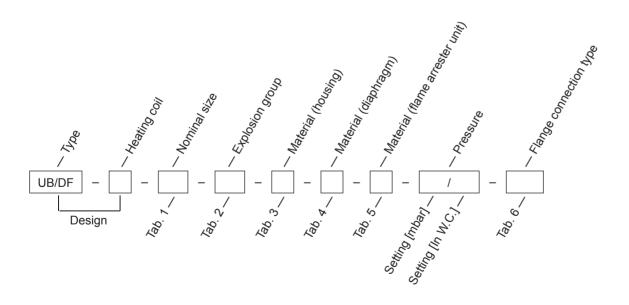
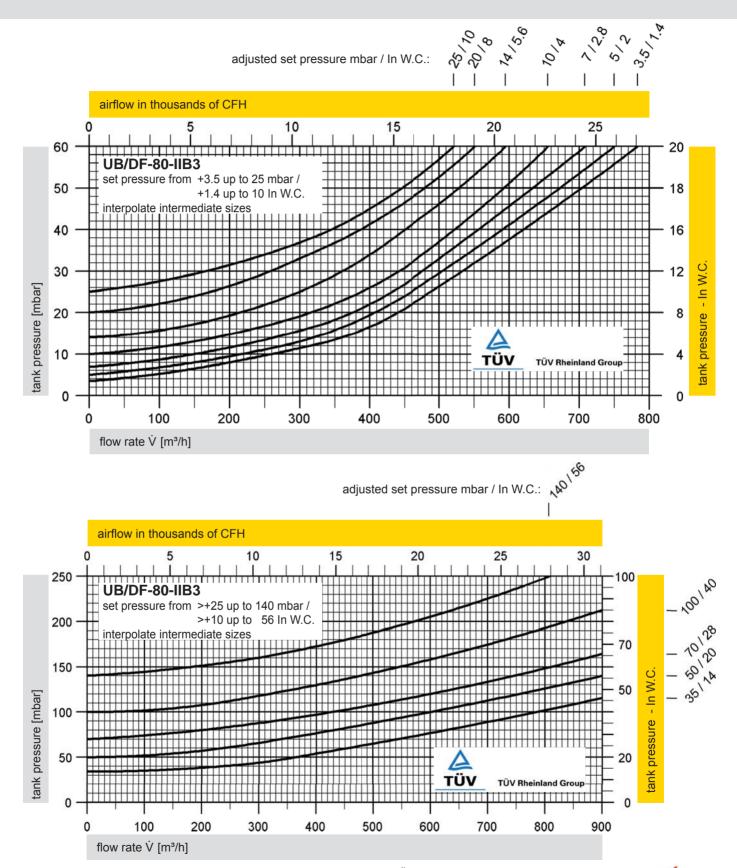

Table 4: Material selection for d	liaphragm		
Design	Α	В	Chariel meterials upon request
Diaphragm	EDM	EED	Special materials upon request

Table 5: Material combinations of flame arrester unit						
Design	Α	С				
FLAMEFILTER® cage	Cast Iron	Stainless Steel	Chariel materials upon request			
FLAMEFILTER®	Stainless Steel	Stainless Steel	Special materials upon request			
Spacer	Stainless Steel	Stainless Steel				

FEP

Table 6: Flange connection type

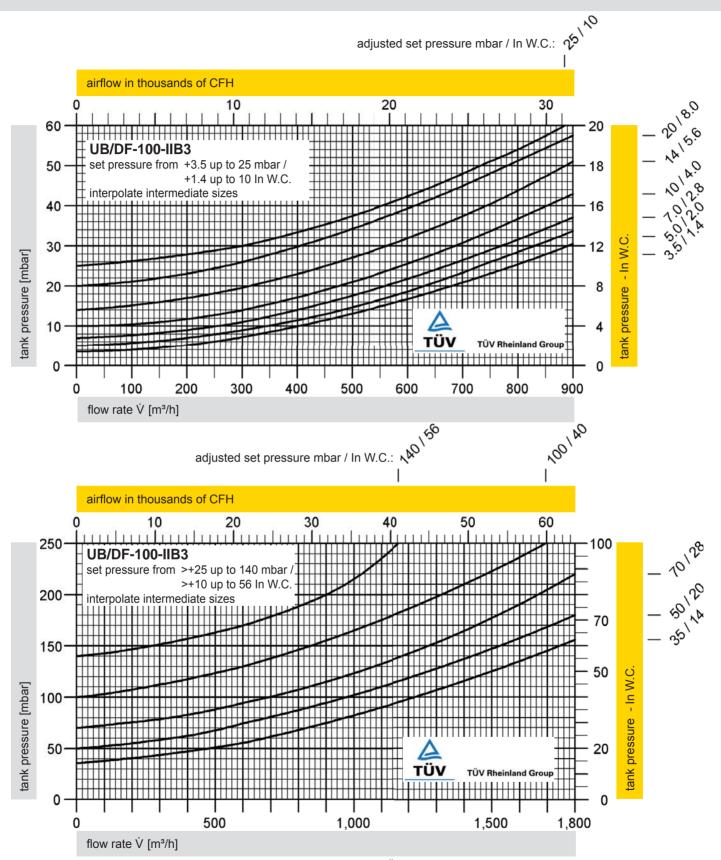
EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request

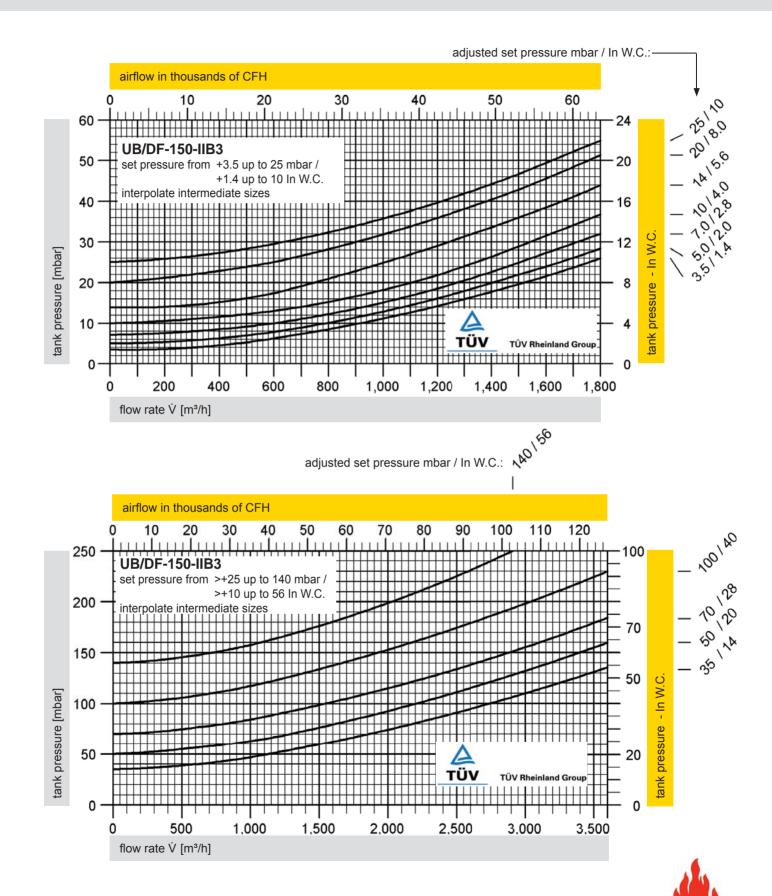

Order example

78

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

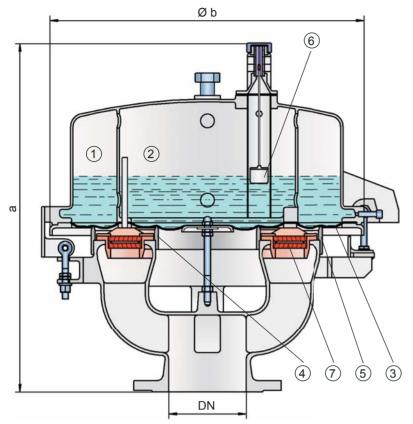
PROTEGO® UB/DF




Pressure Diaphragm valve

Flow Capacity Charts

PROTEGO® UB/DF


PROTEGO® UB/DF

Vacuum Diaphragm Valve deflagration- and endurance burning-proof

PROTEGO® UB/VF

Vacuum Settings: -3.5 mbar up to -35 mbar -1.4 ln W.C. up to -14 ln W.C.

Higher and lower vacuum settings upon request

Function and Description

The deflagration- and endurance burning-proof UB/VF type PROTEGO® diaphragm valve is a state-of-the-art vacuum- relief valve combining the function of a dynamic and static flame arrester. Worldwide this design is unique. It is primarily used as a safety device for flame transmission proof inbreathing on tanks, containers and process engineering apparatus. The valve offers reliable protection against vacuum build up, prevents the inbreathing of air and product losses almost up to the set vacuum and protects against atmospheric deflagration. The PROTEGO® UB/VF diaphragm valve has proven its performance over many years in a great variety of severe applications in the petrochemical and chemical industry. Worldwide it is the only vent which functions in services such as styrene and acrylics. The set vacuum is adjusted with a freeze resistant water glycol mixture, which assures safe operation under extreme cold weather conditions. The UB/VF valve is available for substances from explosion group IIB3 (NEC group C MESG ≥ 0.65 mm).

If a vacuum builds up in the tank, it is transmitted through pressure balancing tubes into the vacuum chambers (1), (2). If the set vacuum, which depends on the liquid column height in the vacuum

chamber, is reached the atmospheric pressure lifts the diaphragm (3) up off the inner and outer valve seat rings (4,5). Ambient air can now flow into the tank. The liquid column heights, which affect the set vacuum, can be checked by a floating level indicator (6).

The tank vacuum is maintained up to the set vacuum with a tightness that is far superior to the conventional standard due to our highly developed manufacturing technology. This is achieved because the liquid loaded diaphragm presses tightly around the special designed valve seat surface area, even when the operating vacuum increases. This is extremely important to reduce leakage to an absolute minimum. After the vacuum is balanced, the valve reseats and provides a tight seal.

At very low vacuum settings the explosion pressures resulting from an atmospheric deflagration may be strong enough to lift the diaphragm off the valve seat rings so that flashback could result. The ignition into the tank can be prevented by installing the PROTEGO® flame arrester unit (7). This flame arrester unit provides additional protection against atmospheric deflagration during regular maintenance and inspection.

The valve can be used up to an operating temperature of +60°C/ 140°F and meets the requirements of European tank design standard EN 14015 – Appendix L and API 2000.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- high performance seal reducing product loss below EPA's 500ppm rule preventing environmental pollution
- set vacuum close to the design vacuum enables optimum pressure maintenance in the system
- · high flow capacity
- can be used as a protective system according to ATEX 94/9/EC in areas subject to an explosion hazard
- protection against atmospheric deflagrations and endurance burning for products up to explosion group IIB3 (NEC group C MESG ≥ 0.65 mm)
- FLAMEFILTER® integrated into valve saves space, weight and reduces cost
- minimum pressure drop of the FLAMEFILTER®
- · freeze protection at sub-zero conditions
- · self draining function for condensate

- · liquid column height is monitored by level indicators
- · easy maintenance through hinged vent cap
- modular design enables individual FLAMEFILTER® and valve diaphragm to be replaced
- · particularly suitable for problematic products such as styrene, acrylics, etc

Design Types and Specifications

The diaphragm is pressurized by liquid.

There are two different designs:

Vacuum diaphragm valve, basic design

UB/VF - -

Vacuum diaphragm valve with heating coil

UB/VF - H

(max. heating fluid temperature +85°C / 185°F)

In addition to the standard design, a series of specially developed designs, which are particularly suitable for the operating conditions to which these products are subjected, can be provided upon request (for example, for acrylics or styrene storage tanks, etc.).

Table '	1: Dimensions	Dimensio	ons in mm / inches			
To select the nominal size (DN), please use the flow capacity charts on the following pages						
DN	vacuum	80 / 3"	vacuum	100 / 4"	150 / 6"	
а	up to -28 mbar / 11.2 ln W.C.	615 / 24.21	up to -22 mbar / 8.8 ln W.C.	645 / 25.39	680 / 26.77	
а	< -28 mbar / 11.2 In W.C.	765 / 31.12	< -22 mbar / 8.8 In W.C.	795 / 31.30	830 / 32.68	
b		410 / 16.14		485 / 19.09	590 / 23.23	

Dimensions for vacuum diaphragm valve with heating coil upon request

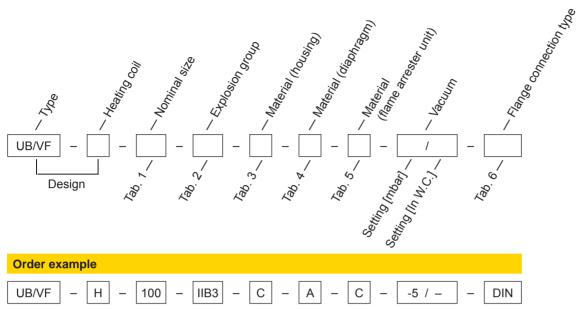
Table 2: Selection of explo	sion group		
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	Chariel approvals upon request
≥ 0,65 mm	IIB3	С	Special approvals upon request

Table 3: Material selection for housing					
Design	В	С	D		
Housing	Cast Iron	Steel	Stainless Steel		
Valve top	Stainless Steel	Stainless Steel	Stainless Steel		
Heating coil (UB/VF-H)	Stainless Steel	Stainless Steel	Stainless Steel		
Valve seat	Stainless Steel	Stainless Steel	Stainless Steel		
Gasket	FPM	FPM	PTFE		
Diaphragm	A, B	A, B	A, B		
Flame arrester unit	Α	С	С		

Option: Housing with ECTFE-lining Special materials upon request

Table 4: Material selection for diaphragm					
Design	Α	В	Chariel materials upon request		
Diaphragm	FPM	FEP	Special materials upon request		

Table 5: Material combinations of flame arrester unit					
Design	Α	С			
FLAMEFILTER® cage	Cast Iron	Stainless Steel	Chariel meterials upon request		
FLAMEFILTER®	Stainless Steel	Stainless Steel	- Special materials upon request		
Spacer	Stainless Steel	Stainless Steel			

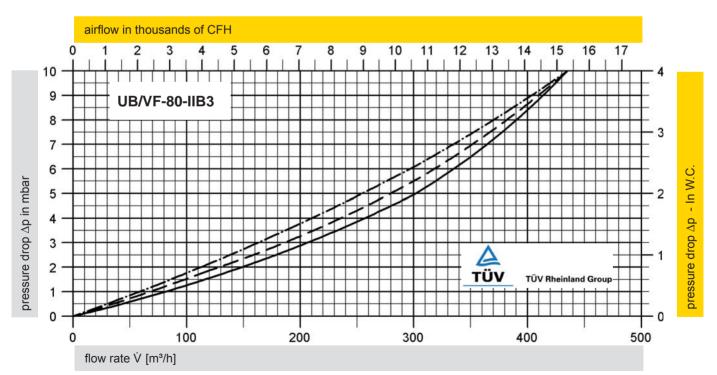

Table 6: Flange connection type		
EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request

for safety and environment

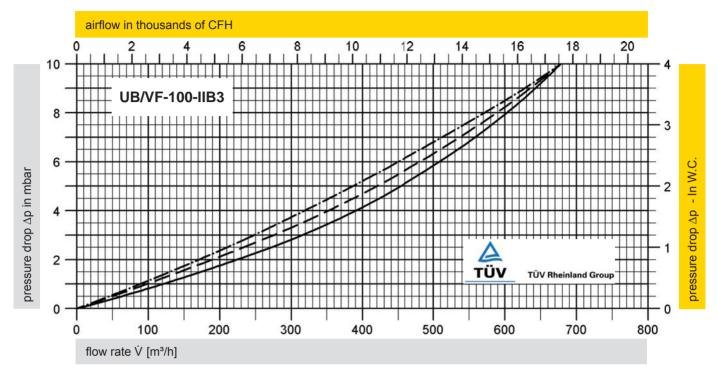
Vacuum Diaphragm Valve deflagration- and endurance burning-proof

PROTEGO® UB/VF

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"


Flow Capacity Chart

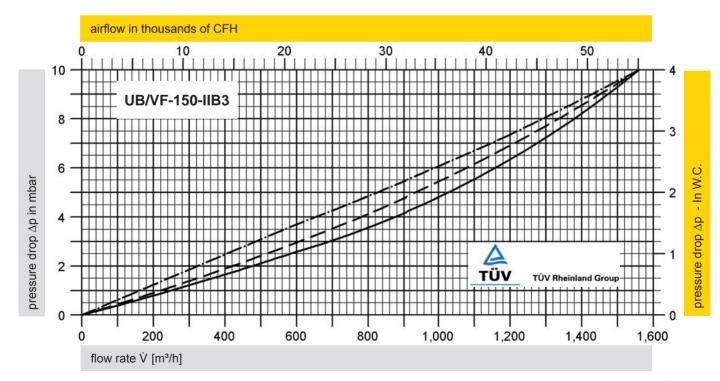
pressure drop = max. allowable tank design vacuum - valve set vacuum adjusted set vacuum:


≤ -5 mbar / ≤ -2 In W.C.

 \longrightarrow > -5 mbar up to ≤ -7 mbar / > -2 In W.C. up to ≤ -2.8 In W.C.

— - - > -7 mbar up to ≤ -15 mbar / > -2.8 In W.C. up to ≤ -6 In W.C.

PROTEGO® UB/VF

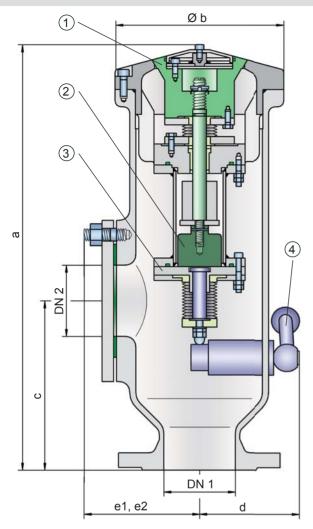

pressure drop = max. allowable tank design vacuum - valve set vacuum

adjusted set vacuum:

≤ -5 mbar / ≤ -2 In W.C.

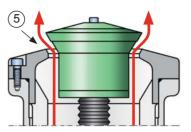
> -5 mbar up to \leq -7 mbar / > -2 In W.C. up to \leq -2.8 In W.C.

— - — > -7 mbar up to ≤ -15 mbar / > -2.8 ln W.C. up to ≤ -6 ln W.C



High Velocity Pressure Relief Valve deflagration- and endurance burning-proof

PROTEGO® DE/S



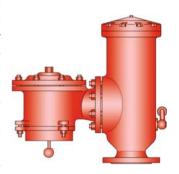
Function and Description

The deflagration- and endurance burning-proof DE/S type PROTEGO® valve is a state of the art high velocity vent valve working on the principle of a dynamic flame arrester. It is primarily used as a safety device for flame transmission proof venting of cargo spaces and loading systems of sea going tankers during the loading process and at sea. The valve offers reliable protection against excess pressure, prevents product losses almost up to the set pressure and provides protection against atmospheric deflagrations as well endurance burning if stabilized burning occurs. The PROTEGO® DE/S high velocity vent valve is available for substances of explosion group IIB3 (NEC group C MESG \geq 0.65 mm).

The valve cone (1) is kept in a closed position by a corrosion resistant permanent magnet (2). The set pressure is adjusted by the distance of the permanent magnet to its counterpart (3). Upon reaching the set pressure (= cold differential test pressure), the valve opens directly to a full lift with only a minor pressure rise (jump characteristic). The set pressure is therefore very close to the maximum allowable working pressure (MAWP) of the cargo space.

operating position of valve - open

Pressure settings:


+100 mbar up to +500 mbar (10 kPa up to 50 kPa)

+40 In W.C. up to +200 In W.C.

Higher or lower pressure settings upon request

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is ensured by valve seats made of high-quality stainless steel with an individually lapped valve cone. After the excess pressure is discharged, the valve reseats and provides a tight seal. The de-

sign of the valve cone and valve seat produces a vertical, free jet that transports the gases far away from the discharge opening. This keeps the deck free of gas. The shape of the valve cone and valve seat promotes the drainage of rainwater when closed. A function check of the valve is easily performed with a manual lift gear (4) that indepen-

dently returns to its initial position after actuation. A lateral flange connection, DN2, is standard for a vacuum valve (such as the PROTEGO® SV/E-S, see page 28).

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. When reaching the adjusted set pressure, the velocity at which the mixtures exit the valve cone gap (5) (the gap between the valve seat and the valve cone) is much higher than the flame velocity. If this mixture ignites, flashback into the tank is prevented. If the mixture flow continues and stabilized burning occurs, the dynamic flame arresting feature prevents flashback ignition even in the case of endurance burning. As the system pressure decreases, the discharge velocity at the valve cone gap decreases also. The design ensures, that even in the closing pressure range, the valve cone closes in a timely manner keeping the discharge velocity far above the flame velocity and thereby preventing flashback.

The valve can be used up to an operating temperature of $+60^{\circ}$ C / 140° F and meets the requirements of ADNR 2005 for type C ships and type N ships.

Type-approved according to ATEX Directive 94/9/EC and EN 12874 as well as other international standards.

Special Features and Advantages

- pressure is set with corrosion resistant permanent magnet
- · jump characteristic within minimum overpressure to a full lift
- excellent tightness for minimum product loss and environmental pollution
- set pressure very near the relieving pressure enables optimum pressure maintenance in the system
- can be used as a protective system according to ATEX 94/9/EC in areas subject to an explosion hazard
- protection against atmospheric deflagrations and endurance burning
- · high flow capacity
- · maintenance-friendly design
- · internal parts protected by bellows

- · manual lift gear to pop valve cone
- · side connection for a vacuum relief valve
- · design promotes rain water drainage
- · prevents gas build up on deck
- · specially developed for in land water way barges

Design Types and Specifications

There are two different designs:

Pressure relief valve, basic design DE/S -

Pressure relief valve with lateral connection **DE/S -...-** * for vacuum relief valve

* additional DN 2 information

Additional special designs upon request

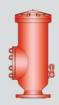
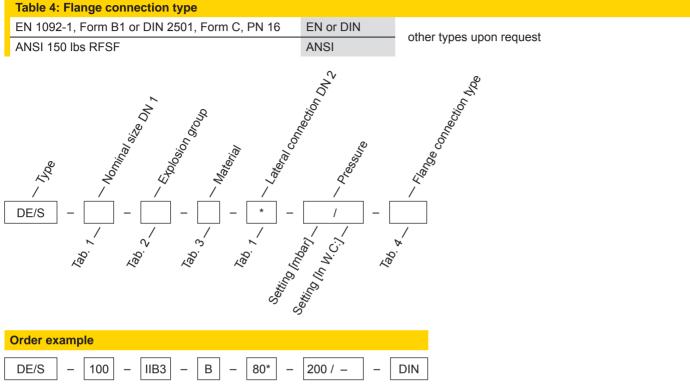
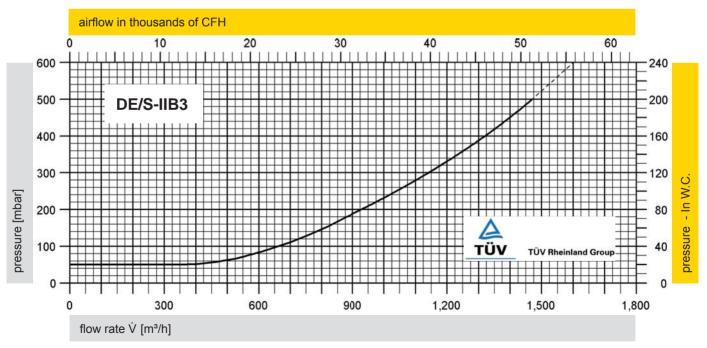

Table 1: Dime	Table 1: Dimensions Dimensions in mm / inches						
To select the nominal size (DN), please use the flow capacity chart on the following page							
	DE/S with	closed lateral connection DN	12				
DN 1	80 / 3"	100 / 4"	150 / 6"				
а	515 / 20.28	515 / 20.28	515 / 20.28				
b	195 / 7.68	195 / 7.68	195 / 7.68				
С	220 / 8.66	220 / 8.66	220 / 8.66				
d	120 / 4.72	120 / 4.72	120 / 4.72				
e1	145 / 5.71	145 / 5.71	145 / 5.71				
	DE/S with	lateral connection for vacuur	n relief valve DN 2				
DN 1	80 / 3"	100 / 4"	150 / 6"	150 / 6"			
DN 2	80 / 3"	80 / 3"	80 / 3"	150 / 6"			
а	515 / 20.28	515 / 20.28	515 / 20.28	515 / 20.28			
b	195 / 7.68	195 / 7.68	195 / 7.68	195 / 7.68			
С	220 / 8.66	220 / 8.66	220 / 8.66	220 / 8.66			
d	120 / 4.72	120 / 4.72	120 / 4.72	120 / 4.72			
e2	100 / 3.94	100 / 3.94	100 / 3.94	100 / 3.94			

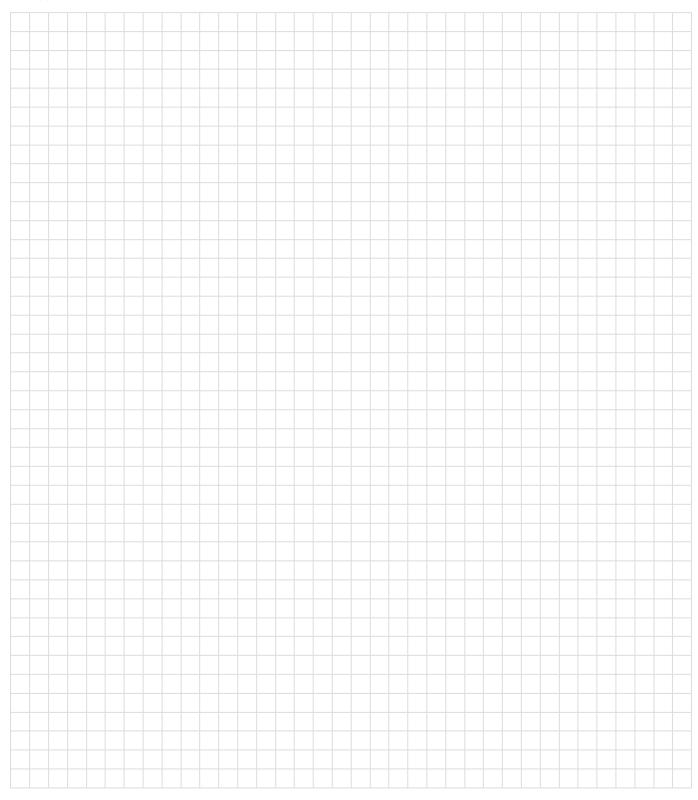
Table 2: Selection of explosion group						
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)	Checial approvals upon request			
≥ 0,65 mm	IIB3	С	Special approvals upon request			

Table 3: Material selection					
Design	Α	В	D		
Housing	Steel	Stainless Steel	Hastelloy		
Valve seat	Stainless Steel	Stainless Steel	Hastelloy		
Valve cone	Stainless Steel	Stainless Steel	Hastelloy		
Bellow	PTFE	PTFE	PTFE		
Gasket	WS 3822	PTFE	PTFE		


Special materials upon request

High Velocity Pressure Relief Valve deflagration- and endurance burning-proof

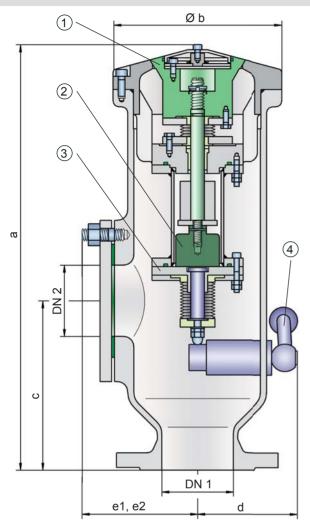

PROTEGO® DE/S


^{*} indication necessary only for valve with lateral connection for vacuum relief valve

Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

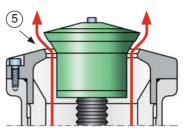
Flow Capacity Chart

Notes:



High Velocity Pressure Relief Valve deflagration- and endurance burning-proof

PROTEGO® DE/S-MK VI



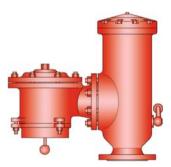
Function and Description

The deflagration proof and endurance burning proof DE/S-MK VI type PROTEGO® device is a state of the art high velocity vent valve working on the principle of a dynamic flame arrester. It is primarily used as a safety device for flame transmission proof venting of cargo spaces and loading systems of sea going tankers during the loading process and at sea. The valve offers reliable protection against excess pressure, prevents product losses almost up to the set pressure and provides protection against atmospheric deflagrations as well as endurance burning if stabilized burning occurs. The PROTEGO® DE/S-MK VI high velocity vent valve is available for substances of explosion groups IIB3 and IIC (NEC group C MESG \geq 0,65 mm and B MESG < 0,50 mm). This makes it the world's first approved endurance burning proof flame arrester for explosion group IIC (NEC group B).

The valve cone (1) is kept in a closed position by a corrosion resistant permanent magnet (2). The set pressure is adjusted by the distance of the permanent magnet to its counterpart (3). Upon reaching the set pressure (= cold differential test pressure), the valve opens directly to a full lift with only a minor pressure rise (jump characteristic). The set pressure is therefore very close to the maximum allowable working pressure (MAWP) of the cargo space.

operating position of valve - open

Pressure settings:


+60 mbar up to +350 mbar (6 kPa up to 35 kPa)

+24 In W.C. up to +140 In W.C.

Higher or lower pressure settings upon request

The tank pressure is maintained up to the set pressure with a tightness that is far superior to the conventional standard due to our state of the art manufacturing technology. This feature is ensured by valve seats made of high-quality stainless steel with an individually lapped valve cone. After the excess pressure is discharged, the valve reseats and provides a tight seal. The de-

sign of the valve cone and valve seat produces a vertical, free jet that transports the gases far away from the discharge opening. This keeps the deck free of gas. The shape of the valve cone and valve seat promotes the drainage of rainwater when closed. A function check of the valve is easily performed with a manual lift gear (4) that indepen-

dently returns to its initial position after actuation. A lateral flange connection, DN2, is standard for a vacuum valve (such as the PROTEGO® SV/E-S, see page 28).

If the set pressure is exceeded, explosive gas/product-vapour air mixtures are released to the atmosphere. When reaching the adjusted set pressure, the velocity at which the mixtures exit the valve cone gap (5) (the gap between the valve seat and the valve cone) is much higher than the flame velocity. If this mixture ignites, flashback into the tank is prevented. If the mixture flow continues and stabilized burning occurs, the dynamic flame arresting feature prevents flashback ignition even in the case of endurance burning. As the system pressure decreases, the discharge velocity at the valve cone gap decreases also. The design ensures, that even in the closing pressure range, the valve cone closes in a timely manner keeping the discharge velocity far above the flame velocity and thereby preventing flashback.

The PROTEGO® DE/S-MK VI high velocity pressure relief valve is also approved for oscillating flow. If a very long pipe is installed between the cargo space and valve, chattering can occur due to the resistance in the pipe or resonance phenomena. This can especially occur during partial load operation. This so called "hammering" does not occur when a sufficient flow passes through the valve and the flow in the upstream line does not stop.

The design is therefore a function of the required flow capacity. Accordingly, there are two different designs: one with a lift of 10 mm and one with 50 mm. The design for explosion group IIC (NEC group B) is only available with a lift of 10 mm.

The valve can be used at an operating temperature up to +60°C/ 140°F; since the valve is approved for group IIB3 (NEC group C) vapours, it also meets the requirements of European Marine Equipment Directive 96/98/EC (MED).

Type-approved according to ATEX Directive 94/9/EC and EN 12874; approved according to IMO MSC/Circular 677, 1009 by GL (the C version), and other international standards.

Special Features and Advantages

- · pressure is set with corrosion resistant permanent magnet
- · jump characteristic within minimum overpressure to a full lift
- · excellent tightness for minimum product loss and environmental pollution
- set pressure very near the relieving pressure enables optimum pressure maintenance in the system
- · can be used as a protective system according to ATEX 94/9/EC in areas subject to an explosion hazard
- · protection against atmospheric deflagrations and endurance burning
- · high flow capacity
- · maintenance-friendly design
- · internal parts protected by bellows

- manual lift gear to pop valve cone
- side connection for a vacuum relief valve
- · design promotes rain water drainage
- · prevents gas build up on deck by meeting IMO requirements for minimum free jet velocity
- · specially developed for sea going vessels but also useful for on shore systems
- · world's first endurance burning flame arrester approved for explosion group IIC (NEC group B)

Design Types and Specifications

There are four different designs

DE/S-MK VI - 10 Pressure relief valve, basic design with 10 mm lift DE/S-MK VI - 50 Pressure relief valve, basic design with 50 mm lift Pressure relief valve with 10 mm lift DE/S-MK VI - 10

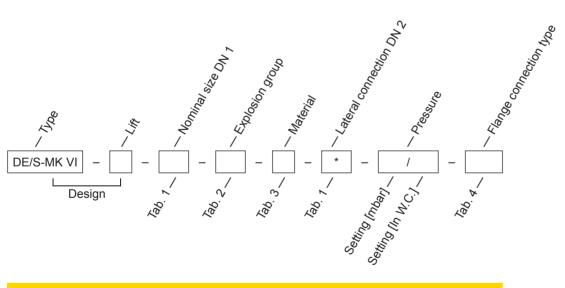

and lateral connection for a vacuum relief valve

Pressure relief valve with 50 mm lift DE/S-MK VI - 50 and lateral connection for a vacuum relief valve

* additional DN 2 information

Additional special designs upon request

Table 1: Dimensions				Dimensions	s in mm / inches	
To select th	ne nominal size (DN), ple	ease use the flow capaci	ty charts on the following pa	ges		
DE/S with closed lateral connection DN 2						
DN 1	80 / 3"	100 / 4"	150 / 6"			
а	515 / 20.28	515 / 20.28	515 / 20.28			
b	195 / 7.68	195 / 7.68	195 / 7.68			
С	220 / 8.66	220 / 8.66	220 / 8.66			
d	120 / 4.72	120 / 4.72	120 / 4.72			
e1	145 / 5.71	145 / 5.71	145 / 5.71			
	DE/S with late	eral connection for vacuu	ım relief valve DN 2			
DN 1	80 / 3"	100 / 4"	150 / 6"	150 / 6"		
DN 2	80 / 3"	80 / 3"	80 / 3"	150 / 6"	_	
а	515 / 20.28	515 / 20.28	515 / 20.28	515 / 20.28	_	
b	195 / 7.68	195 / 7.68	195 / 7.68	195 / 7.68	_	
С	220 / 8.66	220 / 8.66	220 / 8.66	220 / 8.66		
d	120 / 4.72	120 / 4.72	120 / 4.72	120 / 4.72		
e2	100 / 3.94	100 / 3.94	100 / 3.94	100 / 3.94		


High Velocity Pressure Relief Valve deflagration- and endurance burning-proof

PROTEGO® DE/S-MK VI

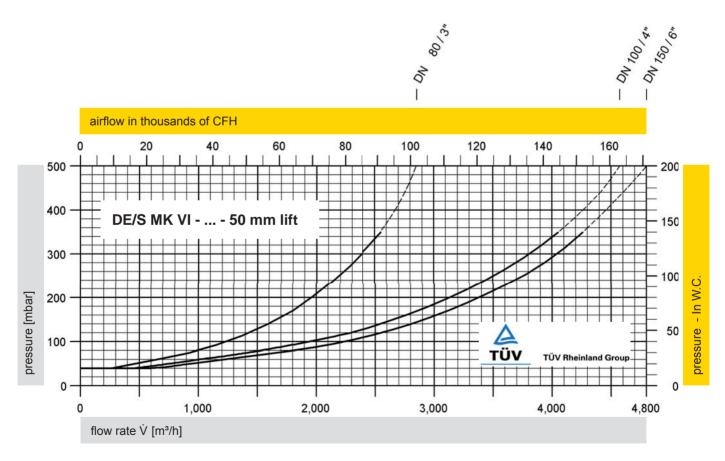
Table 2: Selection of explosion group						
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC/NFPA)				
≥ 0,65 mm	IIB3	С	Special approvals upon request			
< 0,50 mm	IIC	В				

Table 3: Material selection	า				
Design	Α	В	С		
Housing	Steel	Stainless Steel	Hastelloy		
Valve seat	Stainless Steel	Stainless Steel	Hastelloy		
Valve cone	Stainless Steel	Stainless Steel	Hastelloy	Special materials upon request	
Bellow	PTFE	PTFE	PTFE		
Gasket	WS 3822	PTFE	PTFE		

Table 4: Flange connection type		
EN 1092-1, Form B1 or DIN 2501, Form C, PN 16	EN or DIN	other types upon request
ANSI 150 lbs RFSF	ANSI	other types upon request

Order example

DE/S-MK VI - 10 - 100 - IIB3 - A - 80* - 200 / - - DIN


Materials and chemical resistance: See Vol. 1 "Technical Fundamentals"

KA / 7 / 0309 / GB

^{*} indication necessary only for valve with lateral connection for vacuum relief valve

PROTEGO® DE/S-MK VI

Materials, Terms and Conversion Tables

Pressure				
1 bar	= 14.504 psi = 29.530 inch Hg = 0.987 atm	1 lb/ft ²	=	47,88 N/m ² 0,4788 mbar 0,0470 mm WC
	= 401.47 inch H ₂ O			,
1 mbar	= 0.0145 psi = 0.0295 inch Hg = 0.4019 inch H ₂ O = 2.089 lb/ft ²	1 inch WC	= = =	249,08 N/m ² 2,4908 mbar 25,4 mm WC 33.864 mbar
1 kPa 1 inch H ₂ O 1 Pa	= 10 mbar = 2,49089 mbar = 1 N/m ²	1 psi 1 inch Hg 1 psi		68,94757 mbar

Temp	erature
------	---------

To convert °C in °F use	T _F	= 32 + 1,8 T _C
	0°C	= 32°F
	100°C	= 212°F
To convert °F in °C use	$T_{\rm C}$	$= \frac{5}{9} (T_F - 32)$
	0°F	= -17,8°C
	100°F	= 37,8°C

Material

<u>iviateriai</u>			
DIN Material	DIN-Material	ASTM-Material	
Number			
0.6020	GG 20	A 278-30	C.I.
0.7040	GGG 40	A 536-77	C.I.
1.0619	GS-C 25	A 216 Gr. WCB	C.S.
1.4301	X5 CrNi 18 10	A 240 Gr. 304	S.S.
1.4408	G-X6 CrNiMo 18 10	A 351 Gr. CF 8 M	S.S.
1.0425	P 265 GH	A 515 Gr. 60	C.S.
1.4541	X6 CrNiTi 18 10	A 240 Gr. 321	S.S.
1.4571	X10 CrNiMoTi 18 10	A 240 Gr. 316 Ti	S.S.
3.2581	G-Al-Si 12	A 413	Alu
Та	Tantal	UNS R05200	
2.4610	NiMo 16 Cr 16 Ti	UNS N06455	C-4
2.4686	G-NiMo 17 Cr	UNS N30107	Casting
2.4602	NiCr 21 Mo 14 W	UNS N06022	C-22
2.4819	NiMo 16 Cr 15 W	UNS N10276	C-276

The applicable materials are specified in the quotation or the order acknowledgement:

In general the following means

CS (Carbon steel) = 1.0619 or 1.0425 SS (Stainless steel) = 1.4408 or 1.4571 Hastelloy = 2.4686 or 2.4602

Important differences: US decimals in accordance to SI-System

e.g.	1 m	= 100 cm	= 100,00 cm	(UK/US: 100.00 cm)
	1 km	= 1.000 m	= 1.000,00 m	(UK/US: 1,000.00 m)

Sealings and Coatings

PTFE	= polytetrafluoroethylene
PVDF	= polyvinylidene fluoride
PFA	= perfluoroalkoxy polyme
FPM 70	= fluor carbon rubber
WS 3822	= aramide and anorganic fibers as well as mineral
	reinforcement materials bonded with NBR rubber

ECTFE = ethylene chlorotrifluoro ethylene FEP = perfluoroethylene propylene

DN	10	15	20	25	32	40	50	65	80	100
Size	1/4	1/2	3/4	1	11/4	1 ¹ / ₂	2	21/2	3	4
DN	125	150	200	250	300	350	400	450	500	600
Size	5	6	8	10	12	14	16	18	20	24
DN	700	800	900	100	00 12	200 1	1400	1600	1800	2000
Size	28	32	36	40) 4	-8	56	64	72	80

Length

1 cm	= 0.3937	inch	1 inch	=	25,4 mm
1 m	= 3.2808	ft	1 ft = 12 inch	=	0,3048 m
	= 1.0936	yards	1 yard = 3 ft	=	0,9144 m
1 km	= 0.621	miles	1 mile	=	1,609 km

Area

,						
1cm ²	= 0.1550	sq inch	1 sq inch	=	6,4516	cm ²
1 m ²	= 10.7639	sq ft	1 sq ft	=	0,0929	m^2
	= 1.196	sq yards	1 sq yard	=	0,836	m^2
1km ²	= 100	hectares				
	= 0.3861	sq miles				
	= 247	acres				

Volume

VOIU	IIIC			
1 cm ²	3 = 0.06102	cu inch	1 cu inch	$= 16,3870 \text{cm}^3$
1 liter	= 0.03531	cu ft	1 cu ft	= 28,317 liter
	= 0.21998	gal (UK)	1 gal (UK)	= 4,5461 liter
	= 0.26428	gal (US)	1 gal (US)	= 3,785 liter
1 m ³	= 35.315	cu ft	1 cu ft	$= 0.028317 \text{m}^3$
	= 6.299	petr. barrels	1 petr. barrel	$= 0,15876 \mathrm{m}^3$

Mass

1 g	= 0.03527 oz	1 oz =	28,35 g
1 kg	= 2.2046 lb	1 lb =	16 oz
		=	0,4536 kg

Velocity and Volume Flow

1 m/s= 196.85	ft/min	1	ft/min	=	0,508 cm/s
1 km/h = 0.6214		1	mph	=	1,60934 km/h
$1 \text{ m}^3/\text{h} = 4.403$	gal/min (US)	1	gal/min (US)	=	0,227 m ³ /h
= 3.666	gal/min (UK)	1	gal/min (UK)	=	0,273 m ³ /h
= 0.5886	cu ft/min	1	cu ft/min	=	28,317 liter/min
1 kg/h = 0.0367	' lb/min	1	lb/min	=	,
		1	cu ft/h	=	$0.028317 \mathrm{m}^3/\mathrm{h}$

Torsion

1 Nm	= 0.723 lbf ft	1 lbf ft	= 1,38 Nm
------	----------------	----------	-----------

Density

$1 \text{ kg/dm}^3 = 62.43 \text{ lb/cu ft}$	1 lb/cu ft	$= 0.016 \text{ kg/dm}^3$
--	------------	---------------------------

Services and Spare Parts

Safety devices are installed to prevent damage. The requirements need to be defined as early as the engineering stage so that a suitable device can be specified. After delivery and startup, function must be ensured at all times. The comprehensive PROTEGO® program range requires preventive services, assistance during start-up, and qualified maintenance for long term trouble-free operation.

Technical Advice

Experienced PROTEGO® professionals are available to answer the many and complex questions regarding application. They are trained to consider issues relating to process engineering from a safety perspective. Standard and tailored solutions are generated based on current regulations and state-of-the-art information.

Training

By offering continuing education and regular training for the employees of our domestic and foreign customers, we make sure that state-of-the-art knowledge is incorporated into system engineering. We regularly conduct training seminars that cover the theory of technical fundamentals, examples of applications and practice in installing and servicing PROTEGO® devices. The seminars can be offered either at our place of business or at the customers.

Installation and Servicing

We value service and maintenance just as highly as product quality. Qualified operating and service instructions are sufficient for trained professional technicians to perform maintenance tasks. We can provide our trained field service technicians for installation and servicing, or you can use our authorized workshops. The key is trained personnel who are sufficiently prepared for their tasks in our manufacturing plant. Trained qualified professional shops are given a certificate and are authorized to perform maintenance on PROTEGO® devices. We will provide you with contacts in your region.

Research and Development

Our R&D center continuously reviews and develops our devices and incorporates product features relevant to safety engineering. In addition, we develop devices jointly with the customer for customer-specific requirements. The result: Continuous improvement of the performance and quality of flame arresters and valves as well as superior knowledge from basic research, which is incorporated into the design of process engineering systems.

Spare Parts Service

We have original spare parts for you in our headquarter as well as in support centers worldwide. Original spare parts and regular servicing tailored to the respective operating conditions guarantee trouble-free operation.

Germany

PROTEGO® Head Office:

Braunschweiger Flamefilter GmbH Industriestraße 11 38110 Braunschweig

phone: +49(0)5307-809-0 fax: +49(0)5307-7824

email: office@protego.de

PROTEGO (USA) Inc.

497 Jessen Lane Charleston, SC 29492

phone: +1-843-284 03 00 fax: +1-843-284 03 04

email: office@protego.com

Spain

PROTEGO España

Pintor Serra Santa, 19 08860 Castelldefels

phone: +34-93-6 34 21 65 fax: +34-93-6 64 44 64

email: es-office@protego.com

Great Britain

PROTEGO UK Ltd.

Studio 1, Europa House Europa Way Britannia

Enterprise Park

Lichfield, Staffordshire, WS14 9TZ

phone: +44-15 43-42 06 60 fax: +44-15 43-42 06 63

email: uk-office@protego.com

Netherlands

PROTEGO Nederland

Blei 23

1261 PG Blaricum

phone: +31-35-5 26 35 78 fax: +31-35-5 26 74 13

email: ton.kerkmeer@protego.nl

Hungary

PROTEGO Ungarn Kft.

H-3528 Miskolc Berzsenyi D. u. 26.

phone: +36-46-381 815 fax: +36-46-381 816

email: protego@t-online.hu

Switzerland

Ramseyer AG

Industriestraße 32 3175 Flamatt

phone: +41-31-7 44 00 00 fax: +41-31-7 41 25 55 email: info@ramseyer.ch

Austria

PROTEGO Armaturen- und Apparatetechnik

Ges.m.b.H.

Industriestraße B 16 2345 Brunn am Gebirge

phone: +43-22 36-3 27 20 fax: +43-22 36-3 27 21 12

email: office@protego.co.at

France

S.I.D. Steiblé Ingenierie et Distribution SARL

43 Rue Jacques Mugnier 68200 Mulhouse

phone: +33-3-89 60 62 70 fax: +33-3-89 60 62 75

email: info@sid-steible.fr

Brasil

PROTEGO-LESER do Brasil Ltda.

Rua Montevideu 486 - Penha BR - CEP 21020-290 Rio de Janeiro RJ

phone: +55-21-25 73 50 90 fax: +55-21-25 73 82 81

email: protegoleser@protegoleser.com.br

Middle East

PROTEGO Middle East

P.O. Box. 261505 LOB19, 0809, JAFZ Dubai, UAE

phone: +971-4-8 86 50 05 fax: +971-4-8 86 50 55

email: sanjiv.advani@protego.com

PROTEGO Equipment Pvt., Ltd.

R-665, TTC. Industrial Area MIDC, Rabale

Navi Mumbai, 400 701

phone: +91-22-27 69 11 56 fax: +91-22-27 69 20 85

email: sales@protego-india.com

China

PROTEGO China

Room 730A, German Centre, No. 88 Keyuan Rd

Shanghai, 201203

phone: +86-21-28 98 65 58 fax: +86-21-28 98 65 90

email: yan.zhang@protego.com

PROTEGO